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Chapter 1

Evaluation Protocol

1.1 Error
Error is difference between prediction made by machine learning model and groundtruth of data. Consider
a errors in m samples, then error rate is E = a

m and accuracy is 1 − a
m . The error between prediction and

groundtruth of training set is empirical error, while the error on unseen testing data is generalization
error. When a model fits training data well yet performance poor on novel testing data, the model is
considered overfitted.

1.2 Evaluation
Testing data should be independent indentically distributed (i.i.d.) with training data and be novel to training
data. Hence, it’s reasonable to split a dataset into training set and testing set. In practise, we don’t tune the
model at testing set, but modify the parameters on an additional validation set separated from training set.

1.2.1 Hold-out
Simply split dataset D into training set S and testing set T where D = S ∪ T and |S|

m ∈ [2/3, 4/5].

1.2.2 Cross Validation
Let D = D1 ∪D2 ∪ · · · ∪Dk, where Di ∩Dj = ϕ. For each i ∈ [1, k] selected as testing set, all the other sets
serve as training set. Hence, we obtain k training and testing experiments respectively and the final result is
the mean of k results.

1.2.3 Bootstrapping
Sample d randomly from D to construct D′ without D ← D \ d until |D′| = m. Since the probability that a
sample in D never be sampled is (1− 1

m )m, we obtain

lim
m→∞

(1− 1

m
)m ≈ 1

e
= 0.368 (1.1)

which means that the proportion of testing data is 36.8%. Though changing the real data distribution slightly,
Bootstrapping is appropriate for ensemble learning and training from few data.
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1.3 Performance Measure
1.3.1 Mean Square Error
For regression from D = {(x1, y1), . . . , (xm, ym)}, the Mean Square Error is the mostly used indicator.

E(f ;D) =
1

m

m∑
i=1

(f(xi)− yi)
2 (1.2)

For distribution D and density p(·), MSE is

E(f ;D) =
∫
x∼D

(f(x)− y)2p(x)dx (1.3)

1.3.2 Accuracy
We can write error as

E(f ;D) =
1

m

m∑
i=1

I(f(xi) 6= yi) (1.4)

where I(·) is the unit-impulse function. Accuracy is

acc(f ;D) = 1− E(f ;D) (1.5)

Similarly, we can rewrite it from the perspective of probability

acc(f ;D) = 1−
∫
x∼D

I(f(x) 6= y)p(x)dx (1.6)

1.3.3 Precision and Recall
The result space of the model can be splited into 4 sets: 1) True Positive (TP), positive data that predicted
correctly as positive; 2) False Positive (FP), negative data that predicted wrongly as positive; 3) False
Negative (FN), positive data that predicted wrongly as neative; 4) True Negative (TN), negative data that
predicted correctly as negative. It is obvious that |TP ∪ FP ∪ FN ∪ TN | = mIn a word, T/F denotes the
correctness of the prediction and P/N denotes the output of the model. As we are evaluating a discriminative
model, we usually measure the precision and the recall of the output. Precision is

P =
TP

TP + FP
(1.7)

, the propotion of true result in positive predictions. Recall is

R =
TP

TP + FN
(1.8)

, the ratio of true result in positive data. The precision and recall is a trade-off of machine learning models.
Intuitively, if we aim for a model that makes as few errors as possible, we learn a model with higher precision
but lower recall, since the model is ”strict” with ambiguous instances. If we aim for a model that finds
real data as much as possible, we learn a model with higher recall but lower precision, since the model is
”tolerant” with ambiguous examples.
F1 metric is the harmonic mean of P and R

1

F1
=

1

2
(
1

P
+

1

R
) (1.9)

yet more often, we have a bias on precision or recall. Let β be the indicator where we bias on recall when
β > 1 and we bias on precision when β < 1

Fβ =
(1 + β2)PR

β2P +R
(1.10)
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When there are multiple hypothesis sets, we use the sum or the mean of aforementioned variables similarly.
For multiple-class classification, we have multiple confuse matrix, thus multiple pairs of precision and recall.
Hence, we obtain the macro measurement

macroP =
1

n

n∑
i=1

Pi

macroR =
1

n

n∑
i=1

Ri

(1.11)

and the micro measurement
microP =

TP

TP + FP

microR =
TP

TP + FN

(1.12)

1.3.4 ROC and AUC
The coordinates of Receiver Operating Characteristic (ROC) curve is difined as

TPR =
TP

TP ∪ FN
, FPR =

FP

FP ∪ TN
(1.13)

true positive ratio (TPR) and false positive ratio (FPR) serves as horizontal axis and vertical axis respec-
tively. Hence, we measure the area under curve (AUC) of ROC, which is increases monotonically as model
performance increases. An approximation of AUC is

AUC =
1

2

m−1∑
i=1

(xi+1 − xi)(yi+1 + yi) (1.14)

1.3.5 Weighted Cost
All aforementioned metrics regard each failure equivalently, yet it is not appropriate in real scenes. We can
rewrite error as

E(f ;D; cost) =
1

m

( ∑
xi∈D+

I(f(xi) 6= yi)costFP +
∑

xi∈D−

I(f(xi) 6= yi)costFN

)
(1.15)

1.4 Multiple Comparison
1.4.1 Pair t-tests
Here we denote error as ε. For model A and B in k-fold testing, we calculate ∆εi = εAi − εBi to measure the
performance difference of A and B. If

τt = |
√
kµ

σ
| < tα/2,k−1 (1.16)

then we announce that A and B don’t have significant performance difference on the dataset. To independent
error at every iteration, we produce two-fold validation in 5 iterations, where we shuffle the dataset randomly
in every iteration. We calculate mean error of the first iteration µ = (∆1

1+∆2
1)/2 and variance of all iterations

σ2
i = (∆1

i − (∆1
i +∆2

i )/2)
2 + (∆2

i − (∆1
i +∆2

i )/2)
2.

τt =
µ√

1
5

∑5
i=1 σ

2
i

(1.17)

7



Y.-Z. Shi CHAPTER 1. EVALUATION PROTOCOL

1.4.2 Multiple Model Evaluation
Evaluate k algorithms on N datasets. Let ri be the mean rank of algirithm i on all datasets, then use
Friedman test

τχ2 =
12N

k(k + 1)

( k∑
i=1

r2i −
k(k + 1)2

4

)
τF =

(N − 1)τχ2

N(k − 1)− τχ2

(1.18)

If the hypothesis that all algorithms performance equivalently is denied, we use post-hoc test to compare the
algorithms pairwise

CD = qα

√
k(k + 1)

6N
(1.19)

1.4.3 Bias and Variance
Expectation of learning model is

f(x) = ED[f(x;D)] (1.20)

variance on diverse training sets is

var(x) = ED[
(
f(x;D)− f(x)

)2
] (1.21)

while noise is
ε2 = ED[(yD − y)2] (1.22)

Different between expectation and input is

bias2(x) =
(
f(x)− y

)2 (1.23)

Generalized error is the combination of bias, variance and noise.

E(f ;D) = bias2(x) + var(x) + ε2 (1.24)

Bias-variance dilemma: bias dominates generalized error when learning is inadequate, causing underfitting;

bias variance noise
Measures Fitting Power Data Disturb Learning Difficulty

Table 1.1: Essence

variance dominates generalized is adequate, causing overfitting.
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Chapter 2

Mathmatical Background

2.1 Useful Inequalities
2.1.1 Jensen Inequality
For convex function f(x),

f(E[x]) ≤ E[f(x)] (2.1)

2.1.2 Hoeffding Inequality
For indenpendent random variables x1, . . . , xm ∈ [0, 1], ∀ε > 0,

P

(
1

m

m∑
i=1

xi −
1

m

m∑
i=1

E[xi] ≥ ε

)
≤ exp(−2mε2)

P

(∣∣∣∣ 1m
m∑
i=1

xi −
1

m

m

i=1

m∑
i=1

E(xi)

∣∣∣∣ ≥ ε

)
≤ exp(−2mε2)

(2.2)

2.1.3 McDiarmid Inequality
For indenpendent random variables x1, . . . , xm ∈ [0, 1], if ∀1 ≤ i ≤ m, f satisfies

sup
x1,...,xm,x′

i

|f(x1, . . . , xm)− f(x1, . . . , xi−1, x
′
i, . . . , xm)| ≤ ci (2.3)

, ∀ε > 0,

P (f(x1, . . . , xm)− E[f(x1, . . . , xm)] ≥ ε) ≤ exp

(
− 2ε2∑

i c
2
i

)
P (|f(x1, . . . , xm)− E[f(x1, . . . , xm)]| ≥ ε) ≤ exp

(
− 2ε2∑

i c
2
i

) (2.4)

2.2 Lagrange Multipliers
Lagrange Multipliers transform a optimization problem with d variables and k constraints to an unconstrained
optimization problem with d+ k variables.

2.2.1 Equality Constraint
min
x

f(x)

subject to g(x) = 0
(2.5)

9
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where
∀x ∈ g(x),∇g(x) is orthogonal with g(x) = 0

∃x∗,∇f(x∗) is orthogonal with g(x) = 0
(2.6)

Hence, at optimal x∗, the direction of ∇f(x) and ∇g(x) must be consistant or opponent.

∇f(x∗) + λ∇g(x∗) = 0 (2.7)

where λ 6= 0 is Lagrange Multiplier. Then the constraint can be removed by defining Lagrange Function and
set its partial derivative to zero

L(x, λ) = f(x) + λg(x)

let
∂L(x, λ)

∂λ
= 0

⇒ g(x) = 0

(2.8)

2.2.2 Inequality Constraint
min
x

f(x)

subject to hi(x) = 0(i = 1, . . . ,m)

gj(x) ≤ 0(j = 1, . . . , n)

(2.9)

The optimal value p∗ of the problem is

p∗ = inf{f(x)|hi(x) = 0, i = 1, . . . ,m, gj(x) ≤ 0, j = 1, . . . , n} (2.10)

Employ Lagrange Multipliers λ = (λ1, . . . , λm), µ = (µ1, . . . , µn),

L(x, λ, µ) = f(x) +

m∑
i=1

λihi(x) +

n∑
j=1

µjgj(x) (2.11)

According to Karush-Kuhn-Tucker (KKT), we obtain
gj(x) ≤ 0

µj ≥ 0

µjgj(x) = 0

(2.12)

Hence, we can consider the optimization problem into the primal problem and the dual problem. The dual
function Rm×n → R is

Λ(λ, µ) = inf
x∈D

L(x, λ, µ)

= inf
x∈D

(
f(x) +

m∑
i=1

λihi(x) +

n∑
j=1

λjgj(x)

) (2.13)

and it is concave no matter if the primal problem is convex. Suppose x̃ is a feasible point for If p∗ is the
optimal of primal problem, the dual function gives the lower-bound of primal problem. We obtain the convex
optimization problem

max
λ,µ

Λ(λ, µ) s.t. µ � 0 (2.14)

Note that it is convex no matter if the primal problem is convex.

2.3 Computational Learning Theory
2.3.1 Prerequisites
Given D = {(x1, y1), . . . , (xm, ym)}, xi ∈ X , yi ∈ {+1,−1}, where X ∼ D. Let h be a mapping from X to
Y, the generalized error of h is

E(h;D) = Px∼D(h(x 6= y)) (2.15)

10
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the empirical error of h is
Ê(h;D) = 1

m
summ

i=1I(h(xi) 6= yi) (2.16)

For mappings h1, h2, the disaggrement between them is

d(h1, h2) = Px∈D(h1(x) 6= h2(x)) (2.17)

Let ϵ denote the error parameter, namely the upperbound of E(h).

2.3.2 Probably Approximately Correct
Let c : X → Y, if ∀(x, y) |= c(x) = y, c is the aimed concept. The union of all aimed concepts forms
the concept class C. Given machine learning algorithm M, it searches in a space of concepts, namely the
hypothesis space H and a hypothesis h : X → Y ∈ H. If c ∈ H, the problem is separable for (or consistent
with) M; if c /∈ H, the problem is non-separable for M. Let δ denote confidence, for ϵ > 0, δ < 1, if ∃M,

P (E(h) ≤ ϵ) ≥ 1− δ (2.18)

M has the capacity to identify concept class C from hypothesis space H. Furthermore, ∀D, let m be the
number of samples from D, if ∃M, poly(·, ·, ·, ·),

m ≥ poly(1/ϵ, 1/δ, size(x), size(c)) (2.19)

concept class C is PAC learnable for M in hypothesis space H. The lowerbound of m that satisfies the
inequality is the complexity of the samples. For PAC learnable M, if its running time is

poly(1/ϵ, 1/δ, size(x), size(c)) (2.20)

M is the PAC learning algorithm of concept class C.

2.3.3 Finite Hypothesis Space
Assume that the generalized error of h is greater that ϵ, for (x, y) randomly sampled from D,

P (h(x) = y) < 1− ϵ (2.21)

the propablilty that h is consistent with D is

P ((h(x1) = y1) ∧ · · · ∧ (h(xm), ym)) < (1− ϵ)m (2.22)

As h generated by M is unseen,

P (h ∈ H : (E(h) > ϵ) ∧ (Ê(h) = 0) < |H|(1− ϵ)m

< |H|e−mϵ
(2.23)

Hence,
|H|e−mϵ ≤ δ

m ≥ 1

ϵ

(
ln |H|+ ln

1

δ

) (2.24)

This means that we need m samples to learn H.
However, for problems that are non-separable for M, namely c /∈ H, we exploit the empirical error to
approximate generalization error when m is large enough,

P
(
|E(h)− Ê(h)| ≤

√
ln |H|+ ln(2/δ)

2m

)
≥ 1− δ (2.25)

11
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Though M can’t learn the ϵ-approximataion of c when c /∈ H, it can find the hypothesis that minimizes the
generalized error in H

argmin
h∈H

E(h) (2.26)

which is agnostic learning. Let ϵ > 0, δ < 1, ∀m ≥ poly(1/ϵ, 1/δ, size(x)), size(c), if H can generate h from
H that satisfies

P
(
E(h)−min

h∈H
E(h′) ≤ ϵ

)
≥ 1− δ (2.27)

M is agnostic PAC learnable.

2.3.4 Vapnik-Chervonenkis Dimension
VC Dimension is a metric for the complexity of hypothesis space. The growth function of H is the maximum
number of hypothesis h generated from H

ΠH(m) = max
{x1,...,xm}∈X

|{(h(x1), . . . , h(xm))|h ∈ H}| (2.28)

If every h ∈ H can separate D into 2 classes, i.e. ΠH(m) = 2m, H can shatter D. VC Dimension is the
maximum size of D that can be shattered by H,

V C(H) = max{m : ΠH(m) = 2m} (2.29)

We can know that VC Dimension is independent with the distribution of the samples D. In essential, let the
VC Dimension of H be d,

ΠH(m) ≤
d∑

i=0

(
m
i

)
(2.30)

Hence,
ΠH(m) ≤

(e×m

d

)d (2.31)

We obtain the boundary of generalization error from the above two conclusions

P

(
E(h)− Ê(h) ≤

√
8d ln(2em/d) + 8 ln(4/δ)

m

)
≥ 1− δ (2.32)

Hence, the boundary of generalization error ofH only relies on m and is distribution-free and data-indenpendent.
When h stands

Ê(h) = min
h′∈H

Ĥ(h′) (2.33)

, M satisfies Empirical Risk Minimization. All H with finite VC Dimension is agnostic PAC learnable.

2.3.5 Rademacher Complexity
Rademacher complexity takes distribution of samples into consideration, which is in contrary to VC Dimen-
sion that is distribution-free. Hence, Rademacher Complexity is appropriate for infinite hypothesis space. Let
σi denote the Rademacher random variable, P (σi = 1) = P (σi = −1) = 0.5 the hypothesis that minimizes
the empirical error is

sup
h∈H

1

m

m∑
i=1

σih(xi) (2.34)

Hence, the empirical Rademacher complexity of H on X is

R̂X(H) = Eσ

[
sup
h∈H

1

m

m∑
i=1

σih(xi)
]

(2.35)

12
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the Rademacher complexity of H corresponding to D is

Rm(H) = EX⊆X :|X|=m

[
R̂X(H)

]
(2.36)

For regression task, ∀h ∈ H, the following stands with the probability of 1− δ:

E[h(x)] ≤ 1

m

m∑
i=1

h(xi) + 2Rm(H) +
√

ln(1/δ)

2m

H[h(x)] ≤ 1

m

m∑
i=1

h(xi) + 2R̂X(H) + 3

√
ln(2/δ)

2m

(2.37)

For binary classification task, the following stands with the probablility of 1− δ:

E(h) ≤ Ê(h) +Rm(H) +
√

ln(1/δ)

2m

E(h) ≤ Ê(h) + R̂D(H) + 3

√
ln(2/δ)

2m

(2.38)

For hypothesis space H, if

Rm(H) ≤
√

2 lnΠH(m)

m
(2.39)

, then we can obtain the generalization error from the growth function and Rademacher complexity.

E(h) ≤ Ê(h) +

√
2d ln(em/d)

m
+

√
ln(1/δ)

2m
(2.40)

2.3.6 Stability
For D = {z1 = (x1, y1), . . . , zm = (xm, ym)}, the change of D can be

• D\i (leave-one-out): removing sample zi from D.

• Di: substituting sample zi with z′i.

The loss function L(MD, z) describes the difference between predicted label MD and groundtruth y

• Generalization Loss:
L(M,D) = Ex∈X ,z=(x,y)[L(MD, z)] (2.41)

• Empirical Loss:

L̂(M,D) = 1

m

m∑
i=1

L(MD, zi) (2.42)

• Leave-one-out Loss:
Lloo(M,D) = 1

m

m∑
i=1

L(MD\i , zi) (2.43)

For M, if its generalization loss and leave-one-out loss satisfy

|L(MD, z)− L(MD\i , z)| ≤ β (2.44)

M satisfies β-Stability. ∀D, 0 ≤ L(MD, z) ≤M , ∀m ≥ 1, the following stands with the probability of 1− δ:

L(MD, z) ≤ L̂(MD, z) + 2β + (4mβ +M)

√
ln(1/δ)

2m

L(MD, z) ≤ Lloo(MD, z) + β + (4mβ +M)

√
ln(1/δ)

2m

(2.45)

Ultimately, we conclude that if M satisfies Empirical Risk Minimization and has stability, H is learnable.
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Chapter 3

Clustering

3.1 Clustering
Data D = {x1, . . . , xm} without label, D = ∪kl=1Cl where Cl are clusters without intersection, we denote
cluster label as λj = {1, 2, . . . , k}.

3.2 Performance Evaluation
Clustering algorithms should maximizes intra-cluster similarity and minimizes inter-cluster similarity. Clus-
tering result C = {C1, C2, . . . , Ck}, let dist(·) be distance between 2 samples, the mean distance between
samples in C is

avg(C) =
2

|C|(|C| − 1)

∑
1≤i<j≤|C|

dist(xi, xj) (3.1)

and we obtain the maximum distance between samples in C

dmax(C) = max
1≤i<j≤|C|

dist(xi, xj) (3.2)

Furthermore, we measure the minimum distance and centroid distance cross clusters

dmin(Ci, Cj) = min
xi∈Ci,xj∈Cj

dist(xi, xj)

dcen(Ci, Cj) = dist(µi, µj)
(3.3)

where µ = 1
|C|
∑|C|

i=1 xi is the centroid of the cluster. The lower DBI and the higher DI is, the better the
algorithm is

DBI =
1

k

k∑
i=1

max
i ̸=j

(
avg(Ci) + avg(Cj)

dcen(Ci, Cj)

)
DI = min

1≤i≤k

{
min
i ̸=j

dmin(Ci, Cj)

max1≤l≤k dmax(Cl)

} (3.4)

3.3 Distance
Minkowski Distance (LP Norm):

distmk(xi, xj) =

(
n∑

u=1

(xiu − xju)
p

) 1
p

(3.5)
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when p = 1, it is Manhattan Distance (L1 Norm) and p = 2 (L2 Norm) is Euclidean Distance. LP Norm
is appropriate for ordinal attribute, while we use Value Difference Metric (VDM) to calculate distance of
ordinal attribute. Let mu,a denote the sum of samples with attribute a, mu,a,i be samples with attribute a
in cluster i:

V DM(a, b) =

k∑
i=1

‖mu,a,i

mu,a
− mu,b,i

mu,b
‖pp (3.6)

3.4 Prototype-based Clustering
3.4.1 K-means Clustering
MSE is

E =

k∑
i=1

∑
x∈Ci

‖x− µi‖22 (3.7)

where µi =
1

|Ci|
∑

x∈Ci
x.

Algorithm 1: K-means Clustering
Data: D = {x1, . . . , xm}, k
Result: C = {C1, . . . , Ck}

1 while ∃µi 6= µ′
i do

2 Ci ← ϕ(1 ≤ i ≤ k)
3 for j ← 1 to m do
4 dij ← ‖xj − µi‖22
5 λj ← argmini∈{1,...,k} dij
6 Cλj

← Cλj
∪ {xj}

7 for i← 1 to k do
8 µ′

i =
1

|Ci|
∑

x∈Ci
x

9 if µ′
i 6= µi then

10 µi ← µ′
i

3.4.2 Learning Vector Quantilization
Sample xj is consist of n feature vectors (xj1; . . . ;xjn). LVQ aims to learn n-dimensional prototype vector
{p1, . . . , pq}, each of which denotes a cluster ti. Note that LVQ is supervised clustering. For every pi
corresponds to a cluster space Ri, every sample in Ri is closer to pi than any other pj(j 6= i).

3.4.3 Mixture of Gaussian
For random vector x in n-dimensional sample space, Gaussian Distribution of x is

p(x) =
1

2π
n
2 |Σ| 12

e−
1
2 (x−µ)TΣ−1(x−µ) (3.8)

where Σ is covariance matrix by n× n. Gaussian mixture distribution is

pM(x) =

k∑
i=1

αip(x|µi,Σi) (3.9)
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Algorithm 2: Learning Vector Quantilization
Data: D = {(x1, y1), . . . , (xm, ym)}, {t1, . . . , tq}, η
Result: {p1, . . . , pq}

1 init {p1, . . . , pq} (e.g. random sampling)
2 while pi∗ 6= p′ do
3 random sample (xi, yi)
4 dij ← ‖xi − pi‖22
5 i∗ ← argmini∈{1,...,q} dij
6 if yi = ti then
7 p′ ← pi∗ + η(xj − pi∗)
8 else
9 p′ ← pi∗ − η(xj − pi∗)

10 pi∗ ← p′

with k mixtures and αi denotes mixture coefficient. This is solved by maximum likelihood. Generate training
set D = {x1, . . . , xm}, zj = {1, . . . , k} denote unknown mixture component and its posterior is

γji = pM(zj = i|xj) =
αip(xj |µi,Σi)∑k
l=1 αip(xj |µl,Σl)

(3.10)

Hence, the cluster label of each sample is determined by

λj = argi∈{1,...,k} max γji (3.11)

We can solve it by E-M algorithm and Lagrangian, obtain

µi =

∑m
j=1 γjixj∑m
j=1 γji

Σi =

∑m
j=1 γji(xj − µi)

T (xj − µi)∑m
j=1 γji

αi =
1

m

m∑
j=1

γji

(3.12)

In E-step we calculate teh posterior of zj and in M-step we update the parameters of the model.

3.5 Density-based Clustering
• ε-Neighbourhood:

Nε(xj) = {xi ∈ D|dist(xi, xj) ≤ ε} (3.13)

• xj is Core-Object:
|Nε(xj)| ≥MinPts (3.14)

• Directly density-reachable(xi, xj):

(xj ∈ Nε(xj)) ∧ (xiisCore−Object) (3.15)

• Density-reachable(xi, xj):

(p1 = xi) ∧ (pn = xj) ∧ (pi is density − reachabletopi+1)⇒ density − reachable(xi, xj) (3.16)

• Density-connected(xi, xj):

density − reachable(xi, xk) ∧ density − reachable(xk, xj)⇒ density − connected(xi, xj) (3.17)
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Algorithm 3: E-M Gaussian Mixture Model
Data: D = {x1, . . . , xm}, k
Result: C = {C1, . . . , Ck}

1 while not terminated do
2 for j ← 1 to m do
3 γji = pM(zj = i|xj)

4 for i← 1 to k do
5 µ′

i ←
∑m

j=1 γjixj∑m
j=1 γji

6 Σ′
i ←

∑m
j=1 γji(xj−µi)

T (xj−µi)∑m
j=1 γji

7 α′
i ← 1

m

∑m
j=1 γji

8 Ci ← ϕ
9 for j ← 1 to m do

10 λj = argi∈{1,...,k} max γji
11 Ci ← Ci ∪ {xj}

Algorithm 4: Density-based Spatial Clustering of Applications with Noise
Data: D = {x1, . . . , xm}, ε, MinPts
Result: C = {C1, . . . , Ck}

1 Ω← ϕ //Core Object
2 for j ← 1 to m do
3 Nε(xj)
4 if |Nε(xj)| ≥MinPts then
5 Ω← Ω ∪ {xj}

6 k ← 0
7 Γ← D // Unvisited data
8 while Ω 6= ϕ do
9 Γold ← Γ

10 Q < o >, o ∈ Ω
11 Γ← Γ \ {o}while Q 6= ϕ do
12 q ← Q[0]
13 if |Nε(q)| ≥MinPts then
14 ∆← Nε(q) ∩ Γ
15 Q[|Q|]← ∆
16 Γ← Γ \∆

17 k ← k + 1
18 Ck ← Γold \ Γ
19 Ω← Ω \ Ck

3.6 Hierachical Clustering
For two different clusters, we can calculate their maximum inter-cluster distance dmax, minimum inter-cluster
distance dmin and average inter-cluster distance

davg(Ci, Cj) =
1

|Ci||Cj |
∑

w∈Ci,z∈Cj

dist(w, z) (3.18)

Agglomerative Nesting iteratively clusters the samples by minimizing the inner-cluster distance. The imple-
mentation of AGNES depends on the genre of distance: 1) dmax complete linkage; 2) dmin single linkage; 3)
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davg average linkage.

Algorithm 5: Agglomerative Nesting
Data: D = {x1, . . . , xm}, dmin/max/avg, k
Result: C = {C1, . . . , Ck}

1 for j ← 1 to m do
2 Cj ← xj

3 for i← 1 to m do
4 for j ← 1 to m do
5 M [i][j])← d(Ci, Cj)
6 M [j][i]←M [i][j]

7 q ← m
8 while q > k do
9 (Ci∗ , Cj∗)← argCi∗∈C,Cj∗∈C mini∗ ̸=j∗ d(Ci∗ , Cj∗)

10 Ci∗ ← Ci∗ ∪ Cj∗for j ← j∗ + 1 to q do
11 Cj ← Cj−1

12 for j ← 1 to q − 1 do
13 M [i∗][j]← d(Ci∗ , Cj)
14 M [j][i∗]←M [i∗][j]

15 q ← q − 1
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Chapter 4

Metric Learning

4.1 k-NN
k-Nearest Neighbor is not trained explicitily. In contrast to eager learning, k-NN is lazy learning. The
probability of error is (i.e. x and its nearest neighbor z are classified into different classes)

P (error) = 1−
∑
x∈Y

P (c|x)P (c|z) (4.1)

Let c∗ = argmaxc∈Y P (c|x) be the optimal performance of Bayesian classifier,

P (error) = 1−
∑
x∈Y

P (c|x)P (c|z)

' 1−
∑
x∈Y

P 2(c|x)

≤ 1− P 2(c∗|x)
= (1 + P (c∗|x))(1− P (c∗|x)) ≤ 2(1− P (c∗|x))

(4.2)

Hence, we can prove that the error rate of k-NN is not larger than twice of the error rate of optimal Bayesian
classifier.

4.2 Multiple Dimensional Scaling
Curse of dimensionality makes sample sparse and distance difficult to measure. Hence, we exploit dimension
reduction to embed the high dimensional sample space into a subspace. The aim of MDS is

D ∈ Rm×m ⇒ Z ∈ Rd′×m (4.3)
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where ‖zi − zj‖22 = distij . Let B = ZT Z ∈ Rm×m, bij = zTi zj ,

dist2ij = bii + bjj − 2bij

dist2i. =
1

m

m∑
j=1

dist2ij

dist2.j =
1

m

m∑
i=1

dist2ij

dist2.. =
1

m2

m∑
i=1

m∑
j=1

dist2ij

bij = −
1

2
(dist2ij − dist2i. − dist2.j + dist2..)

B = VTΛV

Λ̃ = diag(λ1, . . . , λ
′
d) where d

′ << d

Z = Λ̃1/2VT

(4.4)

Hence, we denote the linear transform of high dimensional space as

Z = WTX (4.5)

4.3 Principle Component Analysis
PCA outputs a hyperplane which minimizes the its distance to all samples and maximizes the variance of
the projections of samples on it.

max
W

tr(WTXXTW)

subject to WTW = I

⇒
XXTW = λW

(4.6)

Select the d′ largest eigenvalues of the covariance matrix XXT and construct the projection matrix by their
corresponding eigenvectors

W = (w1, w2, . . . , wd′) (4.7)
We can calculate the d′ from the predifined reconstruction threshold by∑d′

i=1 λi∑d
i=1 λi

≥ t (4.8)

PCA densifies and denoises the samples.

4.4 Kernelized PCA
Linera dimensional reduction partially destroys the original lower-dimensional space, while Kernelized PCA
retrieves its intrinsic space. ( m∑

i=1

ziz
T
i

)
W = λW

W =

m∑
i=1

zi
zTi W

λ

=

m∑
i=1

ziαi

(4.9)
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Define the kernel matrix K with kernel functions as elements

κ(xi, xj) = ϕ(xi)
Tϕ(xj) (4.10)

the result is d′ largest eigenvalue of K. The projection of new sample x is

zj = wT
j ϕ(x) =

m∑
i=1

αj
iκ(xi, x) (4.11)

4.5 Manifold Learning
Manifold partially shares the properties of Euclidean space, i.e. it is locally homeomorphic with Euclidean
space.

4.5.1 Isometric Mapping
Distance between two points in manifold is the distance of geodesic. Since Manifold is partially homeomorphic
with Euclidean space, distance between nearest neighbors is L2 distance. Hence, we construct a adjacency
graph of neighbors and geodesic between two points in manifold is shortest path of the graph.

4.5.2 Locally Linear Embedding
LLE maintains the linear relationship locally, as xi can be reconstructed by the linear combination of its
neighbor samples

xi = wijxj + wijxk + wijxl (4.12)

Let Qi be the label set of neighbor samples of xi, zi be the corresponding coordinates in lower dimension,

min
w1,...,wm

m∑
i=1

‖xi −
∑
j∈Qi

wijxj‖22

subject to
∑
j∈Qi

wij = 1

min
z1,...,zm

‖zi −
∑
j∈Qi

wijzj‖22

(4.13)

Let Z = (z1, . . . , zm) ∈ Rd′×m, the optimization problem can be rewritten as

M = (I−W)T (I−W)

min
Z

tr(ZMZT )

subject to ZZT = I

(4.14)

4.6 Metric Learning
Euclidean distance regards feature subspaces of samples are orthogonal, metric learning aims to learn the
relationship between feature subspaces. Mahalanobis distance is dimension-weighted Euclidean distance in
essential (i.e. dimension with more significance contributes more to the distance)

dist2mah(xi, xj) = (xi − xj)
TM(xi − xj) = ‖xi − xj‖2M (4.15)

where M is the weight matrix to learn.
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Algorithm 6: Locally Linear Embedding
Data: D = {x1, . . . , xm}, k, d′
Result: Z = (z1, . . . , zm) ∈ Rd′×m

1 for i← 1 to m do
2 Qi ← Nk(xi)
3 if j ∈ Qi then
4 solve wij

5 else
6 wij ← 0

7 M = (I−W)T (I−W)
8 solve Z

4.6.1 Neighbourhood Component Analysis
The classification result of xi is determined by its neighbor xj

pij =
exp
(
−‖xi − xj‖2M

)∑
l exp

(
−‖xi − xj‖2M

) (4.16)

The correct ratio of Left-One-Out on entire data set is
m∑
i=1

pij =

m∑
i=1

∑
j∈Ωi

pij (4.17)

where Ωi denotes the sample set of same class with xi. Let M = PPT , M can be solved by

min
P

1−
m∑
i=1

∑
j∈Ωi

exp
(
−‖PTxi −PTxj‖2M

)∑
l exp

(
−‖PTxi −PTxj‖2M

) (4.18)

4.6.2 Background Knowledge Embedding
Employ must-link constraint set M for samples with high similarity and cannot-link constraint set C for
samples with low similarity, we can solve M by optimizing

min
M

∑
xi,xj∈M

‖xi − xj‖2M

subject to
∑

xi,xj∈C
‖xi − xj‖2M ≥ 1

M � 0

(4.19)
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Chapter 5

Linear Model

Consider sample x with attributes (x1;x2; . . . ;xd), linear model learns the weights of each attributes.

f(x) = w1x1 + w2x2 + · · ·+ wdxd + b =

d∑
i=1

wixi + b (5.1)

Note that each attribute of each sample should be wrote as xd
m and we omit the underscore here for succinct-

ness. The weight vector w = (w1;w2; . . . ;wd) has the comprehensibility that feature corresponding to larger
weight contriutes more to the entire property of the sample.

5.1 Linear Regression
Trained by D = {(x1, y1), . . . , (xm, ym)}, linear regression learns a function that

f(xi) = wxi + b ' yi (5.2)

and it is learned by MSE

(w∗, b∗) = arg min
(w,b)

m∑
i=1

(
f(xi)− yi

)2 (5.3)

We can solve the MSE by least square method that set partial derivative of w and b respectively, obtaining
close form solution

w =

∑m
i=1 yi(xi − 1

m

∑m
i=1 xi)∑m

i=1 x
2
i − ( 1

m

∑m
i=1 xi)2

b =
1

m

m∑
i=1

(yi −wxi)

(5.4)

for multivariate linear regression, we can rewrite w, x, y in vector form and obtain

ŵ∗ = argmin
ŵ∗

(y −Xŵ∗)T (y −Xŵ∗) (5.5)

where M is a matrix with m rows whose rows are feature vectors concatenated by 1 (x1, . . . , xd, 1).

w∗ = (XTX)−1XT y (5.6)

when XTX is full-ranked. However, in most cases this cannot be satisfied and there are multiple solutions
of ŵ. Here we employ Regularization Term to introduce bias to select the solution

(w∗, b∗, λ) = arg min
(w,b)

m∑
i=1

(
f(xi)− yi

)2
+ λ‖w‖22 (5.7)

where λ is the regularization parameter.
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5.2 Logistic Regression
Sigmoid function is a surrogate function for unit-step function in binary classification task. Note that logistic
regression is not a regression model, but a classification model.

y(z) =
1

1 + e−z
(5.8)

Hence
y(x) =

1

1 + e−(wTx+b)
(5.9)

We estimate w, b by log-maximum likelihood. Let x̂i be (xi, 1),

L(w, b) =

m∑
i=1

ln p(yi|xi;w, b)

β = wTx+ b

L(β) =
m∑
i=1

(
−yiβT x̂i + ln

(
1 + eβ

T x̂i
))

β∗ = argmin
β
L(β)

(5.10)

This can be solved by convex optimization like Gauss-Newton, Gradient Descent. GN at t+ 1 iteration is

βt+1 = βt = (
∂2L(β)
∂β∂βT

)−1 ∂L(β)
∂β

∂L(β)
∂β

= −
m∑
i=1

x̂i(yi − p1(x̂i;β))

∂2L(β)
∂β∂βT

=

m∑
i=1

x̂ix̂i
T p1(xi;β)(1− p1(xi;β))

(5.11)

where p1(x̂i;β) = p(y = 1|x̂i, β) is the posterior of class label y = 1.

5.3 Linear Discriminant Analysis
The intuition of LDA is maximizing the inter-class projection distance and minimizing the intra-class projec-
tion distance on a linear plane. This correspond to minimizing the covariance of samples of same class and
maximizing the difference of mean of different classes.

J =
‖wTµ0 −wTµ1‖22
wTΣ0w +wTΣ0w

(5.12)

Within-class scatter matrix is the combination of covariance matrces with respect to class 0 and 1

Sw = Σ0 +Σ1 =
∑
x∈X0

(x− µ0)(x− µ0)
T +

∑
x∈X1

(x− µ1)(x− µ1)
T (5.13)

Between-class scatter matrix is
Sb = (x− µ0)(x− µ1)

T (5.14)

Hence
min
w

wTSbw

subject to wTSww = 1

w = S−1
w (µ0 − µ1)

(5.15)
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We can generalize the conclusions to N multi-classification.

Sw =

N∑
i=1

Swi
,Sb =

N∑
i=1

Sbi (5.16)

The solution is optimizing

max
W

tr(WTSbW)

tr(WTSwW)
(5.17)

5.4 Multiple Classification
We divide multiple classification into series of binary classification problems.

• One vs. One: Binary Classification between every two objective classes, N(N−1)
2 tasks. The final label

is highest voted classifier from each task.

• One vs. Rest: Use Ci as positive samples and all other classes as negative samples, N tasks. The final
label is positive output from all tasks.

• Many vs. Many: Generalized form of OvO and OvR. We split entire dataset into M sets and train
M classifiers. Error Correcting Output Codes (ECOC) tries to make error-tolerant encoding of each
class and predicted labels of each classifier. The final result is the class whose encoding has the highest
similarity with the output encoding.

5.5 Class-inbalance
It is common that negative samples is far more than positive samples. We exploit rescaling to handle this
problem

• Undersampling: discard some negative samples to obtain m+ = m−. This may cause the lose of
significant knowledge. It is appropriate for ensemble learning since the global information can be
maintained by integrating all the learners.

• Oversampling: augment positive samples by interpolation or data augmentation techinques such as
adding disturbution or noise.

• Threshold-moving:

y is positive when
y′

1− y′
=

y

1− y
× m−

m+
> 1 (5.18)
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Chapter 6

Decision Tree

Decision Tree make binary classification on each property at each node. The generation of decision tree
is recursive, where there are 3 return conditions: 1) ∀xi, xj ∈ Dv, C(xi) = C(xj); 2) A = ϕ ∨ (∀xi, xj ∈
Dv, A(xi) = A(xj)); 3) Dv = ϕ. Note that 1) exploits posterior of v while 2) uses prior of the super node of
v.

Algorithm 7: Generating Decision Tree
Data: D = {(x1, y1), (xm, ym)}, A = {a1, . . . , ad}
Result: Decision Tree with node

1 function DecisionTree():
2 new node
3 if ∀xi, xj ∈ D,C(xi) = C(xj) then
4 labelnode ← C
5 return
6 if A = ϕ ∨ (∀xi, xj ∈ D,A(xi) = A(xj)) then
7 labelnode ← argC maxC∈D labelC
8 return
9 a∗ ← arga∈A minGiniindex(D, a)

10 for each a∗v in a∗ do
11 node← node− > branch
12 Dv ← {xi|xi ∈ D(i = 1, . . . ,m), a∗(xi)}if Dv = ϕ then
13 labelbranch ← argC maxC∈D labelC
14 return
15 branch← DecisionTree(Dv, A \ {a∗})

6.1 How to find a∗v

6.1.1 Information Entropy
Let pk be the proportion of samples within class k ∈ {1, . . . , |Y|} in dataset D. Then information entropy of
D is

Ent(D) = −
|Y|∑
k=1

pk log2 pk (6.1)

where 0 ≤ Ent(D) ≤ log2 |Y|. Consider attribute a with V assignments, if we split the dataset by attribute,
the attribute containing more samples contributes more, namely we can get higher information purity if we
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split data with the attribute. This is defined by infromation gain of attribute a in dataset D

Gain(D, a) = Ent(D)−
V∑

v=1

|Dv|
|D|

Ent(Dv) (6.2)

The gain ratio corresponds to the intrinsic IV of the attribute

IV (a) = −
V∑

v=1

|Dv|
|D|

log2
|Dv|
|D|

Gainratio(D, a) =
Gain(D, a)

IV (a)

(6.3)

Gini index measures the purity of data as well

Gini(D) =

|Y|∑
k=1

∑
k′ ̸=k

pkpk′ = 1−
|Y|∑
k=1

p2k (6.4)

Gini ratio is

Giniratio =

V∑
v=1

|Dv|
|D|

Gini(Dv) (6.5)

6.2 Prune
• Pre-pruning: In the process of generating the tree, estimate the generalized performance of the branch,

if it doesn’t contribute much then prune the branch.

• Post-pruning: After the tree is generated, we test the precision of each branch and prune the branches
that lowers the precision of the subtree.
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Chapter 7

Neural Network

7.1 Neuron
A neuron takes input from other n neurons

y = f

( n∑
i=1

wixi − θ

)
(7.1)

where wi is the connection weight between this neuron and neuron i and xi is the output of neuron i, θ is the
activation threshold and can be regarded as the connection weight of a node outputting ”-1”. Hence, neural
network is a model with many weighted linear combination.

7.2 Perceptron
Perceptron gets signal via input layer and output via threshold logic unit. Only the neurons in output layer
can be activated. The weight is learned by the error of output ŷ

wi ← wi +∆wi

∆wi = η(y − ŷ)xi

(7.2)

where η is learning rate. Multi-Layer Perceptron has hidden layers between input layer and output layer.

7.3 Back Propagation
Consider D{(x1,y1), . . . , (xm,ym)},xi ∈ Rd,yi ∈ Rl, the neural network must have d input neurons, l output
neurons and q hidden neurons. The input xi from neuron i at input layer for neuron h at hidden layer is

αh =

d∑
i=1

wihxi (7.3)

The input bh from neuron h at hidden layer with threshold γh for neuron j at output layer is

βj =

q∑
h=1

whjbh (7.4)

The output for (xk,yk) at output neuron j is

ŷkj = f(βj − θj) (7.5)
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MSE is

Ek =
1

2

l∑
j=1

(
ŷk − yk

)2

(7.6)

Hence, the network propagates the error back to neuron h by

∆whj = −η
∂Ek

∂wij
(7.7)

the partial derivative is obtained by chain rule

∂Ek

∂wij
=

∂Ek

∂ŷkj
×

∂ŷkj
∂βj
× ∂βj

∂wij
(7.8)

As
∂βj

∂wij
= bh

gj = −frac∂Ek∂ŷ
k
j ×

∂ŷkj
∂βj

= ŷkj (1− ŷkj )(y
k
j − ŷkj )

eh = bh(1− bh)

l∑
j=1

whjgj

(7.9)

Similarly,
∆θj = −ηgj

∆wih = ηehxi

γh = −ηeh
(7.10)

Note that the training objective function is minimizing

E =
1

m

m∑
k=1

Ek (7.11)

where E is accumulated error. There are two ways to alleviate overfitting

1. Early-Stop: Tune the parameters on training set and estimate the error on validation set. If the error
on training set decreases yet error on validation set increases, we should stop training and set the
parameters corresponding to the iteration that minimizes the error on validation set.

2. Regularization: Add a term that decribes the complexity of network w2
i (connection weight and thresh-

old)

E = λ
1

m

m∑
k=1

Ek + (1− λ)
∑
i

w2
i (7.12)

7.4 Local Minima
If

∃ε > 0∀(w; θ) ∈ {(w; θ)|‖(w; θ)− (w∗; θ∗)‖22 ≤ ε} |= E(w; θ) ≥ E(w∗; θ∗) (7.13)

then E(w∗; θ∗) is the local minima. Only if

∀(w; θ) ∈ {(w; θ)} |= E(w; θ) ≥ E(w∗; θ∗) (7.14)

then E(w∗; θ∗) is the global minima.
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Chapter 8

Support Vector Machine

8.1 Formulation
We aim to find a hyperplane that not only divides different classes of samples, but also has the best gener-
alization on unseen data.

wTx+ b = 0 (8.1)

where w = (w1; . . . ;wd) is the normal vector of the hyperplane, b is the distance between the hyperplane and
original point. A hyper plane is denoted as (w, b) and the distance between an attribute point and (w, b) is

r =
|wTx+ b|
‖w‖

(8.2)

Let {
wTxi + b ≥ +1, yi = +1

wTxi + b ≤ +1, yi = −1
(8.3)

where i ∈ {1, . . . ,m}The samples closest to the hyperplane satisfies the equality, which are support vectors.
The sum of distance between two inter-class vectors is

γ =
2

‖w‖
(8.4)

and γ is the margin. Hence, the desired hyperplane comes with the maximum margin

max
w,b

2

‖w‖
subject to yi(w

Txi + b) ≥ 1

(8.5)

The optimization can be rewritten as

min
w,b

1

2
‖w‖2

subject to yi(w
Txi + b) ≥ 1

(8.6)

8.2 Solve SVM
SVM can be solved as a convex quadratic programming. Firtly we obtain the dual form of primal problem

L(w, b, α) =
1

2
‖w‖2 +

m∑
i=1

αi

(
1− yi(w

Txi + b)
)

(8.7)
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where α = (α1, . . . , αm). Set the partial of L to w and b respectively and obtain

w =

m∑
i=1

αiyixi

0 =

m∑
i=1

αiyi

b =
1

|S|
∑
s∈S

(
ys −

∑
s∈S

yiαix
T
i xs

) (8.8)

where S = {i|αi > 0, i = 1, 2, . . . ,m} is the set of all support vectors. Hence, we obtain the dual problem

max
α

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj

subject to

m∑
i=1

αiyi = 0

αi ≥ 0

(8.9)

Finally

f(x) =

m∑
i=1

αiyix
T
i x+ b (8.10)

Note that the KKT is 
αi ≥ 0

yi(f(xi)− 1) ≥ 0

αi(yif(xi)− 1) = 0

(8.11)

8.3 Kernelization
Since some sample spaces are not linearly separatible, we map the samples into a higher dimensional feature
space to obtain linearly separatible. Let ϕ(·) be the mapping function

f(x) = wTϕ(x) + b

min
w,b

1

2
‖w‖2

subject to yi(w
Tϕ(xi) + b) ≥ 1

max
α

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjϕ(xi)
Tϕ(xj)

subject to

m∑
i=1

αiyi = 0

αi ≥ 0

(8.12)

Denote κ(·, ·) in original sample space as the operation that is equivalent to the inner product of two vectors
in the feature space

κ(xi,xj) = ϕ(xi)
Tϕ(xj) (8.13)

We can substitute ϕ(xi)
Tϕ(xj) with κ(xi,xj), then the support vector expansion is

f(x) =

m∑
i=1

αiyiκ(x,xi) + b (8.14)
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The kernel matrix is a symmetric matrix whose elements are kernel functions, retrieving the symmetric
property of kernel functions

K =

κ(x1, x1) . . . κ(x1, xm)
... . . . ...

κ(xm, x1) . . . κ(xm, xm)


Hence, selection of kernel functions determines the performance of SVM. There are some common kernels

• Linear Kernel:
κ(xi,xj) = xT

i xj (8.15)

• Polynomial Kernel:
κ(xi,xj) = (xT

i xj)
d (8.16)

• Gaussian Kernel:

κ(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
σ > 0 (8.17)

• Laplacian Kernel:

κ(xi,xj) = exp

(
−‖xi − xj‖

σ

)
σ > 0 (8.18)

• tanh Kernel:
κ(xi,xj) = βxT

i xj + θ β > 0, θ < 0 (8.19)

Let κ1, κ2 be kernel functions then

κ(x, z) = γ1κ1(x, z) + γ2κ2(x, z) γ1 > 0, γ2 > 0

κ1 ⊗ κ2(x, z) = κ1(x, z)κ2(x, z)

κ(x, z) = g(x)κ1(x, z)g(z)

(8.20)

are kernel functions.

8.4 Soft Margin
Soft margin is tolerant to some samples that don’t satisfy the constraint

yi(w
Txi + b) ≥ 1 (8.21)

Since 0/1 loss is neither convex nor continuous, usually we use surrogate loss

Lhinge(z) = max(0, 1− z)

Lexp(z) = exp(−z)
Llog(z) = log(1 + exp(−z))

(8.22)

We introduce slack variable ξ ≥ 0 and the objective function is rewritten as

min
w,b

1

2
‖w‖2 + C

m∑
i=1

L(wTxi + b) =
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi

ξ ≥ 0

(8.23)

the Lagrangian of objective function is

L(w, b, α, µ, ξ) =
1

2
‖w‖2 + C

m∑
i=1

ξi +

m∑
i=1

αi(1− ξi − yi(w
Txi + b)) +

m∑
i=1

µiξi (8.24)
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set the partial derivatives to zero

w =

m∑
i=1

αiyixi

0 =

m∑
i=1

αiyi

C = αi + µi

max
α

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj

subject to

m∑
i=1

αiyi = 0

0 ≤ αi ≤ C

(8.25)

KKT is 

αi ≥ 0

1− ξi − yi(w
Txi + b) ≤ 0

αi(1− ξi − yi(w
Txi + b)) = 0

µi ≥ 0

− ξi ≤ 0

µiξi = 0

(8.26)

Note that we can write the objective function in a more general form

min
f

Ω(f) + C

m∑
i=1

L(f(xi), yi) (8.27)

where Ω(f) is structural risk corresponding to the complexity of the model, which is the regularization term.
The regularization term can be L2, L1 and L0 norm, among which the first one makes w dense while the
other two make w sparse.

8.5 Support Vector Regression
The intuition of SVR is we can be tolerant for the output with some error ε. The loss function is ε-insensitive
loss

Lε(z) = max(0, |z| − ε) (8.28)

with slack varibles ξi, ξ̂i, the objective is

min
w,b,ξi,ξ̂i

1

2
‖w‖2 + C

m∑
i=1

(ξi + ξ̂i)

subject to f(xi)− yi ≤ ξi + ε

f(xi)− yi ≥ ξ̂i + ε

ξi ≥ 0, ξ̂i ≥ 0

(8.29)

The objective can be solved by Lagrange Dual. Solution omitted.
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Chapter 9

Bayesian Classifier

9.1 Bayesian Decision Theory
Consider Y = {c1, . . . , cN} classes, λij the loss of misclassifying sample cj to ci, then we obtain the expectation
loss R(ci|x) (i.e. conditional risk) for classifying x to ci:

R(ci|x) =
N∑
j=1

λijP (cj |x) (9.1)

where P (cj |x) is posterior. Let h be the discriminate criteria that minimizes global risk (i.e. all conditional
risks)

R(h) = Ex[R(h(x)|x)] (9.2)

Bayesian decision rule is selecting the label of sample x that minimizes the conditional risk

h∗ = argc∈Y minR(c|x) (9.3)

where h∗ is the Bayes Optimal Classifier and its corresponding globa risk R(h∗) is Bayes risk. Since

R(c) = 1− P (c|x) (9.4)

the classifier with minimal classification error is

h∗(x) = argc∈Y P (c|x) (9.5)

9.2 Naive Bayes Classifier
The Bayes Theory bridges posterior P (c|x) with prior P (c)

P (c|x) = P (c)P (x|c)
P (x)

=
P (c)

P (x)

d∏
i=1

P (xi|c) (9.6)

where P (xi|c) is class-conditional probability on every property of x, namely likelihood between xi and c.
The discriminate criteria of Naive Bayes is

hnb(x) = argc∈Y max

d∏
i=1

P (xi|c) (9.7)

where
P (c) =

|Dc|
|D|

(9.8)
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for properties with discrete value,
P (xi|c) =

|Dc,i|
|Dc|

(9.9)

for properties with continuous value, let P (xi|c) ∼ N (µc,i, σ
2
c,i),

P (xi|c) =
1√

2πσc,i

exp

(
− (xi − µc,i)

2

2σ2
c,i

)
(9.10)

We usually employ Laplacian Correction to smooth the prior and evidence

P̂ (c) =
|Dc|+ 1

|D|+N

P̂ (xi|c) =
|Dc,i|+ 1

|Dc|+Ni

(9.11)

where N is the sum of potential classes and Ni is the number of possible assignments of property i.

9.3 Semi-naive Bayes Classifier
In contrary to considering mutual dependence between any two properties in Naive Bayes, Semi-naive Bayes
Classifier only estimates the dependence of one other property for any property (One-Dependence Estimator,
ODE).

P (c|x) = P (c)

d∏
i=1

P (xi|c, pai) (9.12)

where property xi in dependent on pai. A straightforward idea is assuming a all properties rely on a
property ”super-parent” (SPODE), and make sure the property of super-parent by cross validation. A more
sophiscated method is Average One-dependence Estimator, which tries every property as the super-parent
and the SPODE with sufficient training data

P (c|x) =
d∑

i=1,|Dxi
|≥m′

P (c, xi)

d∏
j=1

P (xj |c, xi) (9.13)

where
P̂ (c, xi) =

|Dc,xi |+ 1

|D|+Ni

P̂ (xj |c, xi) =
|Dc,xi,xj |+1

|Dc,xi
|+Nj

(9.14)

9.4 Bayesian Network
9.4.1 Introduction
A Bayesian Network B = (G,Θ), where G is a directed acylic graph that πi → xi and Θ is the set of
θi = P (xi|πi). Assuming every attribute is independent with its non-descent attributes, the joint distribution
of attribute x1, . . . , xd is

PB(x1, . . . , xd) =
∏

i = 1mP (xi|πi) =
∏

i = 1mθxi|πi
(9.15)

V-structure decribes the scene that two independent attributes xa, xb are both the dependence of attribute
xc. When P (xc) is given, xa, xb are dependent yet if P (xc) stays unknown, xa, xb are indenpendent and this
is marginal independence. In D-separation, we find all V-structures, add an undirected edge between two
dependence nodes and substitute all edges with undirected edges. This operation is moralization and the
generated undirected graph is moral-graph.
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9.4.2 Training
Bayesian Network exploits Minimal Description Length criteria to determine the score function. Given
training set D, score function is

s(B|D) = f(θ)|B| − LL(B|D)

LL(B|D) =
m∑
i=1

logPB(xi)
(9.16)

where f(θ) is describes the bits for encoding parameter θ. When G is fixed, minimizing s(B|D) is equivalent
to the maximum likelihood estimation of Θ,

θxi|πi
= P̂D(xi|πi) (9.17)

9.4.3 Inference
Let Q = {Q1 = q1, . . . , Qn = qn} denoted the querying variables, E = {E1 = e1, . . . , Ek = ek} are evidence
variables and the objective of the query is calculating P (Q = q|E = e). Inference is done by Gibbs sampling.

P (Q = q|E = e) ' nq

T
(9.18)

the prior is the proportion of observations equal to query in sampling iteration t. Gibbs sampling is a random
walk in a subspace of the joint distriution of all variables which is consistent to E = e.

Algorithm 8: Gibbs Sampling
Data: B = (G,Θ), T, E(e), Q(q)
Result: P (Q = q|E = e) ' nq

T
1 nq ← 0
2 q0 ← random()
3 for t← 1 to T do
4 for Qi ∈ Q do
5 Z ← E ∪Q \ {Qi}
6 z ← e ∪ qt−1 \ {qi}
7 PB(Qi|Z = z)
8 qti ← assignment for Qi in PB(Qi|Z = z)

9 qt ← qt−1 ∪ qti \ q
t−1
i

10 if qt = q then
11 nq ← nq + 1

9.5 Expectation-Maximization Algorithm
Let X be observed variables, Z be unobserved variables (i.e. latent variables), maximizing the log-likelihood
is maximizing

LL(Θ|X,Z) = lnP (X,Z|Θ) (9.19)
Since Z are latent variables, we can maximize the marginal likelihood by calculating the expectation of Z

LL(Θ|X) = lnP (X|Θ) = ln
∑
Z

P (X,Z|Θ) (9.20)

For iteration t of the E-M algorithm,

• Expectation step: inference the distribution of Z by Θt, calculate the expectation of log-likelihood on
the latent variables

Q(Θ|Θt) = EZ|X,ΘtLL(Θ|X,Z) (9.21)
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• Maximization step:
Θt+1 = argΘ maxQ(Θ|Θ)t (9.22)

the E-M algorithms uses current parameters to inference latent variables and updates the parameters
to maximize likelihood iteratively until converge to a local optima.
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Chapter 10

Ensemble Learning

Ensemble Learning is a collection of some individual learners, obtaining better generalization than weak
classifiers. Consider a binary classification task and the error rate of a component learner is ε, h is hypothesis
and f is groundtruth

P (hi(x) 6= f(x)) = ε (10.1)

assume that the error rates of individual learners are independent, then according to Hoeffding Inequality,

P (H(x) 6= f(x)) =

⌊T
2 ⌋∑

k=0

(
T
k

)
(1− ε)kεT−k

≤ exp

(
−1

2
T (1− 2ε)2

)
H(x) = sign

( T∑
i=1

hi(x)

)
(10.2)

this means that the error ratio of ensemble learner decreases exponentially as the number of individual
learners increases.

10.1 Boosting
Boosting learns a base learner from initial data and shifs the data distribution according to the testing results,
then learns the next learner on the modified data, which enhances the samples that lead the former learner
to error. This procedure performs iteratively until it learns T individual learners. In essential the ensemble
learner is a linear combination of weak learners

H(x) =

T∑
t=1

atht(x) (10.3)

to minimize the exponential loss function

Lexp(H|D) = Ex∼D exp
(
−f(x)H(x)

)
(10.4)

Set the partial derivative of H to zero, we obtain

H(x) =
1

2
ln

P (f(x) = 1)|x
P (f(x) = −1)|x

(10.5)

Hence
sign(H(x)) = argy∈{−1,1} maxP (f(x) = y|x) (10.6)
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and it approaches the error rate of Bayes Optimal Classifier. When the former classifier ht based on Dt is
generated, its weight αt minimizes the loss function

Lexp(αtht|Dt) = Ex∼Dt exp

(
−f(x)αtht(x)

)
= (1− εt)e

−αt + εte
αt (10.7)

Set the partial derivative of αt to zero, we obtain

αt =
1

2
ln

(
1− εt

ε

)
(10.8)

An ideal individual learner ht has the capacity to correct all the errors made by Ht−1

Lexp(Ht−1 + ht|D) = Ex∼D exp

(
−f(x)(Ht−1(x) + ht(x))

)
ht(x) = argh minLexp(Ht−1 + h|D)

= argh minEx∼D⊔ [I(f(x) 6= h(x))]

(10.9)

Hence, an ideal individual learner minimizes its error on Dt, and the training data disturbution for next
iteration is its residual approximation

Dt+1 = Dt exp

(
−f(xαtht(x))

)Ex∼D exp

(
−f(x)Ht−1(x)

)
Ex∼D exp

(
−f(x)Ht(x)

) (10.10)

Since, Boosting enhances decreasing bias instead of variance, it is appropriate for improving performance of

Algorithm 9: AdaBoost
Data: D = {(x1, y1), . . . , (xm, ym)}, base learnerM, T

Result: H(x) = sign

(∑T
t=1 atht(x)

)
1 D1(x)← 1

m
2 for t← 1 to T do
3 ht ←M(D,D)t
4 ε← Px∼Dt

(ht(x) 6= f(x))
5 if ε > 0.5 then
6 terminate
7 αt ← ln 1−εt

εt

8 Dt+1 ← 1
Zt
Dt(x) exp

(
−f(x)αth(x)

)

base learner with poor generalization.

10.2 Random Forest
10.2.1 Bagging
Remind Bootstrap Sampling aforementioned, we obtain T training sets with the proportion of 63.2% sam-
ples in entire dataset. Hence, the remaining 36.8% samples are used for out-of-bag (oob) estimate to test
generalization, let Hoob denote the estimation on x of model didn’t trained on x

Hoob(x) = argy∈Y max

T∑
t=1

I(ht(x) = y)I(x /∈ Dt) (10.11)
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the generalized error of oob is
εoob =

1

|D|
∑

x,y∈D

Hoob(x) 6= y (10.12)

In contrary to Adaboost that enhances minimizing bias, Bagging focus on minimizing variance.

Algorithm 10: Bagging
Data: D = {(x1, y1), . . . , (xm, ym)}, base learnerM, T

Result: H(x) = argy∈Y max
∑T

t=1 I(ht(x) = y)

1 for t← 1 to T do
2 ht ←M(D,DBootstrap)

10.2.2 Random Forest
Random Forest is an extension of Bagging that uses decision tree as base learner. Consider a ∈ {a1, . . . , ad}
is the property of current node, convention decision tree selects the most appropriate property for splitting
while RF selects a subset with k properties randomly and select the best attribute in the subset. Normally
k = log2 d. RF not only add pertubation into samples, but into attributes, which improve the generalization
of Bagging.

10.3 Combination of Individual Learners
We aim to ensemble T individual learners {h1, . . . , hT }, we can combine them via

10.3.1 Average
• Average:

H(x) =
1

T

T∑
i=1

hi(x) (10.13)

• Weighted Average:

H(x) =

T∑
i=1

wihi(x) (10.14)

10.3.2 Voting
Let (h1

i (x); . . . ;h
N
i (x)) be the output of the model on sample x, where N is the number of class labels

{c1, . . . , cN} for the classification task.

• Mojority Voting:

H(x) =


cj , if

T∑
i=1

hj
i (x) >

1

2

N∑
k=1

T∑
i=1

hk
i (x)

reject, otherwise

(10.15)

• Plurality Voting:
H(x) = cargj max

∑T
i=1 hj

i (x)
(10.16)

• Weighted Voting:
H(x) = cargj max

∑T
i=1 wih

j
i (x)

(10.17)
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10.3.3 Meta-Learning
In contrary to learn a model directly predicts the distribution of data, a meta-learner learns how to combine
the individual learners, thus a meta-learner is a secondary learner. Meta-learner is trained on the output of
weak learners with the supervision of initial labels. Meta Learning aims to enable the model ”learning to
learn”. In another word, meta learning doesn’t learn the relationships in training data, but learns the metric
to set appropriate configuration for specific learning task. As Stacking exploits a series of individual learning

Algorithm 11: Stacking
Data: D = {(x1, y1), . . . , (xm, ym)}, base learnerM1, . . . ,MT , meta− learnerM
Result: H(x) = h′(h1(x), . . . , ht(x))

1 for t← 1 to T do
2 ht ←Mt(D)

3 D′ ← ϕ
4 for i← 1 to m do
5 for t← 1 to T do
6 zit ← ht(xi)

7 D′ ← D′ ∪ {(zi1, . . . , ziT ), yi}
8 h′ =M(D′)

models, Model-Agnostic Meta Learning (MAML) is a technique that makes deep nerual networks gain fast
adaption to new testing tasks with only a few training samples. We train the model on diverse tasks with a
few examples in each task. MAML doesn’t learn the best model to fit existing tasks, but learns the model
easily to achieve convergence on unseen tasks. Let θ be parameters of the model and T⟩ denote task i, the
updating of θ over examples in task i is

θ′i = θ − α∇θLTi(fθ) (10.18)

where L is the loss function for the task. After evaluating all examples in a task, MAML updates the
parameter globally.

θ = θ − β∇θ

∑
Ti

LTi(fθ′
i
) (10.19)

Note that the loss we calculate this time uses the parameters tuned on the corresponding task, thus distinct
MAML from conventional gradient-based training. In essential, MAML uses the gradient on diverse tasks to
update the parameters of the learner.

10.4 Diversity
10.4.1 Ambiguity
For sample x, the Ambiguity of learner hi is

A(hi|x) =
(
hi(x)−H(x)

)2 (10.20)

and the ambiguity of the ensemble learner is

A(h|x) =
T∑

i=1

wi

(
hi(x)−H(x)

)2 (10.21)

Ambiguity decribes the inconsistency of individual learners on x. The MSEs are

E(hi|x) =
(
f(x)− hi(x)

)2
E(H|x) =

(
f(x)−H(x)

)2 (10.22)
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where f is groundtruth function of the regression. The weighted average error of individual learner is

E(hi|x) =
T∑

i=1

wiE(hi|x) (10.23)

Hence
A(h|x) = E(h|x)− E(h|x) (10.24)

Let p(x) be the density of x, the generalized error and ambiguity on entire data set are

Ei =

∫
E(hi|x)p(x)dx

Ai =

∫
A(hi|x)p(x)dx

E =

∫
E(H|x)p(x)dx

(10.25)

Hence

E =

T∑
i=1

wiEi

A =

T∑
i=1

wiAi

A = E − E

(10.26)

this is error-ambiguity decomposition.

10.4.2 Diversity Measure
Consider two individual learners hi, hj , there are P (2, 2) = 4 assignments of the result that where a, b, c, d

hi = +1 hi = −1
hj = +1 a c
hj = −1 b c

denote the number of the qualified samples. There are several measures of diversity

• Disagreement measure:
disij =

b+ c

m
(10.27)

• Correlation coefficient:
ρij =

ad− bc√
(a+ b)(a+ d)(c+ d)(b+ d)

(10.28)

• Q-statistic:
Qij =

ad− bc

ad+ bc
(10.29)

• κ-statistic: p1 is the probability that the two learners is consistent with each other and p2 is the
probability that the two learners make same assumption accidently

κ =
p1 − p2
1− p2

p1 =
a+ d

m

p2 =
(a+ b)(a+ c) + (c+ d)(b+ d)

m2

(10.30)
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10.4.3 Enhance Diversity
• Pertubation on sampling.

• Pertubation on attributes. Random Subspace algorithms selects several subspaces of attributes from
sample space and trainings each learner on each subspace of attribute. This operation prunes the
redundancy attributes.

Data: D = {(x1, y1), . . . , (xm, ym)}, base learnerM, T, number of subspaces d′

Result: H(x) = argy∈Y max I(ht(MapFt
(x)) = y)

1 for t← 1 to T do
2 Ft ← RandomlySelect(D, d′)
3 Dt ←MapFt(D)
4 ht ←M(Dt)

• Pertubation on output representation.

• Pertubation on parameters of the model.
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Sparse Representation

11.1 Feature Selection
11.1.1 Filtering
Relief algorithm exploits correlative statistic to measure the significance of the subspace of feature space.
Consider there are |Y| classes in D, sample xi belongs to class k, then it finds the sample xi,nh (nearest-hit)
closest to xi in the same class and the sample xi,l,nm(l = 1, . . . , |Y| ∧ (l 6= k)) (nearest-miss) closest to xi in
every other class. The correlative statistic corresponding to attribute j is

δj =
∑
i

−(xj
i − xj

i,nh)
2 +

∑
l ̸=k

(
pl(x

j
i − xj

i,l,nm)2
)

(11.1)

where pl is the proportion of samples in class l in entire datas.

11.1.2 Las Vegas Wrapper
Las Vegas Wrapper takes the performance of the learner as evaluation metric. Note that LVW calculates the
error only considering feature subset A′ on entire dataset, and we want it to decrease the error on A or to
smallerize the size of feature subset.

Algorithm 12: Las Vegas Wrapper
Data: D, attribute set A, learnerM, maximum iteration T
Result: feature subset A∗

1 E ←∞
2 A∗ ← |A|
3 d← A
4 t← 0
5 while t < T do
6 randomly generate feature subset A′

7 d′ ← |A′|
8 E′ ← CrossV alidation(M(DA′

))
9 if (E′ < E) ∨ ((E′ = E) ∧ (d′ < d)) then

10 t = 0
11 E ← E′

12 A∗ ← A′

13 d← d′

14 else
15 t← t+ 1
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11.1.3 L1 Regularization
As aforementioned in Regression, we add an L2 norm to the MSE loss function to alleviate overfitting

min
w

m∑
i=1

(wTxi − yi)
2 + λ‖w‖22 (11.2)

which is Ridge Regression (or Tikhonov Regression). We can also add an L1 norm

min
w

m∑
i=1

(wTxi − yi)
2 + λ‖w‖1 (11.3)

this is Least Absolute Shrinkage and Selection Operator (LASSO), obtaining a more sparse solution (i.e. less
non-zero elements). Though L0 norm generates most sparse solution, it is discrete and hard to optimize. We
solve LASSO

min
x

f(x) + λ‖x‖1 (11.4)

via Proximal Gradient Descent, if f(x) is derivative and satisfies L-Lipschitz that exists an constant L > 0

‖∇f(x′ − x)‖22 ≤ L‖x′ − x‖22 (∀x′,x) (11.5)

the second-order taylor approximation of xk

f̂(x) ' L

2

∥∥∥∥x− (xk −
1

L
∇f(xk)

)∥∥∥∥2
2

+ const (11.6)

hense, we both descent f(x) via gradient and minimizes L1 norm simultaneously,

xk+1 = argx min

∥∥∥∥x− (xk −
1

L
∇f(xk)

)∥∥∥∥2
2

+ λ‖x‖1

z = x− 1

L
∇f(x)k

xk+1 = argx min ‖x− z‖22 + λ‖x‖1

(11.7)

since each element of x is orthogonal, we have close solution

xi
k+1 =


zi − λ

L , zi > λ
L

0, |zi| < λ
L

zi + λ
L , zi < − λ

L

(11.8)

11.2 Dictionary Learning
Dictionary Learning is consist of a procedure of sparse encoding. Let B ∈ Rd×k be the dictionary matrix
and k is the vocabulary of the dictionary, αi ∈ Rk is the sparse representation of sample xi ∈ Rd, dictionary
learning is

min
B,αi

m∑
i=1

‖xi −Bαi‖22 + λ

m∑
i=1

‖αi‖1 (11.9)

we follow the idea solving LASSO to solve it

min
αi

‖xi −Bαi‖22 + λ‖αi‖1 (11.10)

then we fix αi to update B.
min
B
‖X−BA‖2F (11.11)

where X ∈ Rd×m and A ∈ Rk×m. ‖ · ‖F is the Frobenius norm, namely the matrix form of L2 norm.
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11.3 Compressed sensing
Consider discrete signal x of length m, we sample by Nyquist and obtain y of length n where n << m,
Φ ∈ Rn×m is sampling matrix,

y = Φx (11.12)

Let Ψ ∈ Rm×m that x = Ψs, then
y = ΦxΨs = As (11.13)

where A ∈ Rn×m is a dictionary that transforms x to a sparse representation s. The core of compressed
sensing is reconstruction. Restricted Isometry Property describes that for A ∈ Rn×m where n << m, if

∀Ak ∈ Rn×k, s ∃δk ∈ (0, 1) |= (1− δk)‖s‖22 ≤ ‖Aks‖22 ≤ (1 + δk)‖s‖22 (11.14)

then A satisfies k-RIP. We can retrive s then x from y by optimizing

min
s
‖s‖0

subject to y = As
(11.15)

since L0 norm is not continuous, it can be relaxed to L1 norm and solved via the idea of solving LASSO.
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Chapter 12

Semi-supervised Learning

12.1 Generative Models
This method is based on the assumption that all data are generated by a single potential model. Consider
sample x and its groundtruth label y ∈ Y = {1, . . . , N}, the data is generated by the distribution

p(x) =

N∑
i=1

p(x|µi,Σi) (12.1)

where p(x|µi,Σi) is the probability of x in in gaussian mixture model i. Denote f(x) ∈ Y as the prediction
of f on x, Θ ∈ {1, . . . , N} is the gaussian mixture component of x. The maximum prior of x is

f(x) = argj∈Y

N∑
i=1

p(y = j|Θ = i,x)p(Θ = i|xi) (12.2)

where
p(Θ = i|x) = p(x|µi,Σi)∑N

i=1 p(x|µi,Σi)
(12.3)

is the probability of x generated by gaussian mixture model i. We calculate the probabilities of unlabeled
sample belonging to all gaussian mixture components at E-step and update the parameters at M-step iter-
atively until convergence. The we use the learned parameters to pridect the classes of unlabeled samples.
However, generative models come with it’s fair share of drawbacks that they are based on the assumption that
the distribution of model is equivalent to the groundtruth distribution, which is rarely seen in real scenes.

12.2 Semi-Supervised Support Vector Machine
S3VM tries to find a hyperplane that both separates labelled samples and goes through the space with low
density. Transductive SSVM assigns labels on all unlabelled samples and searches for a hyperplane with max-
imum margin. The prediction is the final assignment of unlabelled data. Given Dl = {(x1, y1), . . . , (xl, yl)},
Du = {xl+1, . . . ,xm}, the aim of TSVM is giving predicted label ŷ = {ŷl+1, . . . , ŷm}

min
w,y,ŷ,ξ

1

2
‖w‖2 + Cl

l∑
i=1

ξi + Cu

m∑
i=l+1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi

ŷi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0

(12.4)

Since make assinment for all unlabelled samples is computing consuming, TSVM search locally and optimizes
iteratively. It initially trains a SVM with labelled data and assigns pseudo-labels to entire dataset. Note
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that only the separation of labelled data is reliable in the case, we set Cl >> Cu. Then TSVM searches for
samples classfied in different classes and have the lowest confidence (i.e. sum of their slack variables is larger
than 2), then shifts their labels and solves the optimization. Finally it increases Cu and shifts label in the
next iteration until Cu = Cl. when there is severe class imbalance, we can exploits two constants C+

u , C−
u

Algorithm 13: Transductive SVM
Data: Dl = {(x1, y1), . . . , (xl, yl)},;
Du = {xl+1, . . . ,xl+u}, Cl, Cu

Result: ŷ = {ŷl+1, . . . , ŷl+u}
1 SVMl ← SVM(Dl)
2 y = {ŷl+1, . . . , ŷl+u} ← SVMl(Du)
3 Cu ← {Cu|Cu >> Cl}
4 while Cu < Cl do
5 w, b, ξ ← solve optimization
6 while ∃{i, j|(ŷiŷj < 0) ∧ (ξi > 0) ∧ (ξj > 0) ∧ (ξi + ξj > 2)} do
7 ŷi ← −ŷi
8 ŷj ← −ŷj
9 w, b, ξ ← solve optimization

10 Cu ← {2Cu, Cl}

instead of Cu and let
C+

u =
u−

u+
C−

u (12.5)

12.3 Graph Semi-Supervised Learning
Given Dl = {(x1, y1), . . . , (xl, yl)}, Du = {xl+1, . . . ,xm}, G = (V,E) where V = {x1, . . . , xm} and the graph
can be represented as

Wij =

{
exp
(
−∥xi−xj∥2

2

2σ2

)
, i 6= j

0, otherwise
(12.6)

G learns f : V → R, the energy function of f is

E(f) =
1

2

m∑
i=1

m∑
j=1

Wij

(
f(xi)− f(xj)

)2
= fT (D−W)f

(12.7)

where f = (fTl fTu )T , fl, fu denotes the prediction on labelled data and on unlabelled data respectively, D =
diag(d1, . . . , dm), di =

∑m
j=1 Wij . Let

W =

(
Wll Wlu

Wul Wuu

)
D =

(
Dll 0lu

0ul Wuu

)
P = D−1W

(
D−1

ll Wll D−1
ll Wlu

D−1
uuWul D−1

uuWuu

) (12.8)

Set the partial derivative of E(f) to fu to zero,

fu = (I−Puu)
−1Pulfl (12.9)

When it comes to multi-classification yi ∈ Y, denote F ∈ Rm×|Y | as label matrix and its ith row is the label
vector of x1 where

yi = arg max
1≤j≤Y

(F)ij (12.10)
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F(0) = Yij =

{
1, (1 ≤ i ≤ l) ∧ (yi = j)

0, otherwise
(12.11)

Our optimization objective is

min
F

1

2

( m∑
i,j=1

Wij

∥∥ 1√
di
Fi −

1√
dj

Fj

∥∥2
2

)
+ µ

l∑
i=1

‖Fi −Yi‖22 (12.12)

the regularization term constraints that the learned model is not far away from initial model. We construct
label propagation matrix to solve it

S = D− 1
2WD− 1

2 (12.13)
Hence,

F(t+ 1) = αSF(t) + (1− α)Y (12.14)
and the iteration can converge to

F∗ = lim
t→∞

F(t) = (1− α)(I− αS)−1Y (12.15)

Algorithm 14: Label Propagation
Data: Dl = {(x1, y1), . . . , (xl, yl)},;
Du = {xl+1, . . . ,xl+u}, σ, α
Result: ŷ = {ŷl+1, . . . , ŷl+u}

1 W

2 S← D− 1
2WD− 1

2

3 F(0)
4 t← 0
5 while not converged to F ∗ do
6 F(t+ 1)← αSF(t) + (1− α)Y
7 t← t+ 1

8 for i← l + 1 to l + u do
9 yi ← argmax1≤j≤Y(F∗)ij

12.4 Disagreement-based Methods
Consider a sample with multiple attribute sets, namely each attribute sets denotes a perspective to describe
the samples. This is appropriate for co-training, i.e. train a learner on each attribute set with labelled
samples, then let the learner assign pseudo labels with highest confidence and send the samples to other
learners as labelled samples to train on. The iteration terminates when every learner converges. Note that
we only consider two attribute sets in this case.

12.5 Semi-Supervised Clustering
12.5.1 Constrain
Two kinds of constraints on connectivity: ”must-link” samples (xi, xj) ∈M must belong to the same cluster
while ”cannot-link” samples (xi, xj) ∈ C must belong to different clusters.

12.5.2 Labelled Samples
Exploiting labelled samples in k-means is relative easy that we use them as the initial centriods clusters.
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Algorithm 15: co-training
Data: Dl = {(〈x1

1,x
2
1〉, y1), . . . , (〈x1

l ,x
2
1〉, yl)},;

Du = {〈x1
l+1,x

2
l+1〉, . . . , 〈x1

l+u,x
2
l+u〉}, s, p, n, T, M}

Result: h1, h2

1 Ds ← ϕ ∪ {Dt|(Dt ⊂ Du) ∧ (|Dt| = s)}
2 Du ← Du \Ds

3 for j in {1, 2} do
4 Dl ← {(xj

i , yi)|(〈x
j
i ,x

3−j
i 〉, yi) ∈ Dl}

5 for t← 1 to T do
6 for j in {1, 2} do
7 hj ←M(Dj

l )
8 Dp, Dn ← Ds with highest confidence

9 D̃p ← {(x3−j
i ,+1)|xj

i ∈ Dp}
10 D̃n ← {(x3−j

i ,−1)|xj
i ∈ Dn}

11 Ds ← Ds \ (Dp ∪Dn)

12 if (h1 = h′
1) ∧ (h2 = h′

2) then
13 terminate
14 else
15 for j in {1, 2} do
16 Dj

l ← Dj
l ∪ (D̂j

p ∪ D̂j
n

17 Ds ← Ds ∪ {Dt|(Dt ⊂ Du) ∧ (|Dt| = 2p+ 2n)}

Algorithm 16: Constrained k-means
Data: D = {x1, . . . ,xm}, M, C, k
Result: {C1, . . . , Ck}

1 randomly select k samples as initial mean vector{µ1, . . . , µk}
2 while ∃µj 6= µ′

j do
3 Cj ← ϕ
4 for i← 1 to m do
5 Dij ← ‖xi − µj‖22
6 K ← {1, 2, . . . , k}
7 is_merged← false
8 while ¬is_merged do
9 r ← argminj∈K dij

10 if (xi ∈ Cr) ∧ C ∧K |= ϕ then
11 Cr ← Cr ∪ {xi}
12 is_merged← true

13 else
14 K ← K \ {r}if K = ϕ then
15 terminate, raise error

16 for j ← 1 to k do
17 µ′

j ← 1
|Cj |

∑
x∈Cj

x
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Algorithm 17: Semi-supervised k-means
Data: D = {x1, . . . ,xm}, labelled samples S = ∪kj=1Sj , k
Result: {C1, . . . , Ck}

1 for j ← 1 to k do
2 µj ← 1

|Sj |
∑

x∈§j x

3 while ∃µj 6= µ′
j do

4 for j ← 1 to k do
5 for x in Sj do
6 Cj ← Cj ∪ {x}

7 for x in D \ S do
8 dij ← ‖xi − µj‖22
9 r ← argminj∈{1,...,k} dij

10 Cr ← Cr ∪ {xi}
11 for j ← 1 to k do
12 µ′

j ← 1
|Cj |

∑
x∈Cj

x
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Chapter 13

Probabilistic Graphic Model

13.1 Hidden Markov Model
The variables in HMM can be divided into 2 groups, one is state variables yi ∈ Y = {s1, . . . , sN} and the
other is observed variables xi ∈ X = {o1, . . . , oM}. Since state variables are usually unobserved, they are
latent variables. At attribute moment, observed variable xt only relies on its corresponding state variable yt,
regardless of former states. Hence, the joint distribution of all variables is

P (x1, y1, . . . , xn, yn) = P (y1)P (x1|y1)
n∏

i=1

P (yi|yi−1)P (xi|yi) (13.1)

from the equation, we can find three genres of parameters:

• Probability of state transformation P (yi|yi−1):

aij = P (yt+1 = sj |yt = si), 1 ≤ i, j ≤ N (13.2)

• Probability of observation P (xi|yi):

bij = P (xt = oj |yt = si), 1 ≤ j ≤M (13.3)

• Probability of initial state π = {π1, . . . , πN}:

πi = P (y1 = s1), 1 ≤ i ≤ N (13.4)

13.2 Markov Random Field
MRF is an undirected graph model. For a node subset in the graph, if there’s an egde between attribute two
nodes, the subset is a clique. If the clique can’t preserve this property by adding another node, the clique is
a maximal clique. For variables x = {x1, . . . , xn} and the set C for all cliques, the joint distribution is

P (x) =
1

Z

∏
Q∈C

ϕQ(xQ) (13.5)

where ϕQ is the potential function corresponding to clique Q and Z =
∑

x

∏
Q∈C ϕQ(xQ) is the normalization

factor. The problem can be reduced to calculating joint distribution only on maximal cliques

P (x) =
1

Z∗

∏
Q∈C∗

ϕQ(xQ) (13.6)

where C∗ is the set of maximal cliques.
Consider node sets A, B, C, if the nodes in C separates the nodes in A from B (i.e. make the two sets
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unconnected with each other), C is the separating set. According to Global Markov Property, given C, the
variables in A and B are indenpendent with each other.

xA ⊥ xB |xc (13.7)

Hence,
P (xA, xB |xC) = P (xA|xC)P (xB |xC) (13.8)

The Local Markov Property derives from the global markov property that given the adjacent nodes of an
attribute node, it is independent from all other nodes.

n∗(v) = n(v) ∪ {v}, xV ⊥ xV \n∗(v)|xn(v) (13.9)

This can be extended to Pairwise Markov Propety, namely the two nonadjacent nodes are independent with
each other

(u, v ∈ V ) ∧ (< u, v >/∈ E) |= xu ⊥ xv|xV \<u,v> (13.10)
Finally we obtain the potential function of Markov Random Field

H(Q)(xQ) =
∑

u,v∈Q,u̸=v

αuvxuxv +
∑
v∈Q

βvxv

ϕQ(XQ) = e−HQ(xQ)

(13.11)

13.3 Conditional Random Field
In contrary with Hidden Markov Model and Markov Random Field, which are generative models, Conditional
Random Field is discriminative model. Let x be observed sequence and y be label sequence, for G = (V,E)
and nodes of the graph are elements of y, if

P (yv|xv,xV \n(v)) = P (yv|xv,xn(v)) (13.12)

stands, < y,x > constructs a CRF. Hence,

P (y|x) = 1

Z
exp

(∑
j

n−1∑
i=1

λjtj(yi+1, yi,x, i) +
∑
k

n∑
i=1

µksk(yi,x, i)

)
(13.13)

where tj(yi+1, yi,x, i) is the transition feature function on adjacent labels and sk(yi,x, i) is the status feature
function on label i.

13.4 Marginalization
Consider xF ,xE are two unintersected subsets of variables x,

P (xF |xE) =
P (xE ,xF )∑
xF

P (xE ,xF )

P (xE) =
∑
xF

P (xE ,xF )
(13.14)

Belief Propagation reduces the redundance in calculating margin distribution

mij(xj) =
∏
xi

ϕ(xi, xj)
∏

k∈n(i)\j

mki(xi) (13.15)

the belief passes message mij from xi to xj , thus the operation only relies on xi and its adjacent nodes.

P (xi) =
∏

k∈n(i)

mki(xi) (13.16)

Firstly we select a root and propagate the messages to all other nodes until the messages are received by all
leaves, then the leaves propagate back until all the messages are received by root.
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13.5 Approximate Inference
13.5.1 Markov Chain Monte Carlo Sampling
When we are interested in expectation instead of distribution,

Ep[f ] =

∫
f(x)p(x)dx (13.17)

we can sample {x1, . . . , xN} according to p(x),

f̂ =
1

N

N∑
i=1

f(xi) (13.18)

when the samples are indenpendent from each other, the sampling obtains high precision. When x is in high
demensional, we use MCMC method. The intuition is that at time t the Markov Chain is stable with

p(xt)T (xt−1|xt) = p(xt−1)T (xt|xt−1) (13.19)
where T is the status transformation probability, then p(x) is the stable distribution of the Markov Chain.
Metrobolis-Hastings algorithm exploits reject sampling to approximate p(x), i.e. there’s chance that the
candidate sample will be rejected. Let Q(x∗|xt−1) be the prior, A(x∗|xt−1) be the acceptance probability,

p(xt−1)Q(x∗|xt−1)A(x∗|xt−1) = p(x∗)Q(xt−1|x∗)A(xt−1|x∗) (13.20)
Hence,

A(x∗|xt−1) = min

(
1,

p(x∗)Q(xt−1|x∗)

p(xt−1)Q(x∗|xt−1)

)
(13.21)

13.5.2 Variational Inference
Variational Inference approximates posterior of local optimal with deterministic solution. Consider observable
variables {x1, . . . , xN} rely on latent variable z, the joint distribution of x is

p(x|Θ) =

N∏
i=1

∑
x

p(xi; z|Θ) (13.22)

We use E-M algorithm to inference the distribution of latent variable p(z|x,Θ):
• Expectation step: inference P (z|x,Θt) by Θt.

• Maximization step:
Θt+1 = argΘ maxQ(Θ;Θt)

= argΘ max
∑
x

p(z|x,Θt) ln p(x, z|Θ) (13.23)

Hence, the approximate distribution q(z) is
q(z) = L(q) +KL(q‖p)

L(q) =
∫

q(z) ln
p(x, z)

q(z)
dz

KL(q‖p) = −
∫

q(z) ln
p(z|x)
q(z)

dz

(13.24)

Assume z is the ensemble of independent variables zi

q(z) =

M∏
i=1

qi(zi) (13.25)

the optimal q∗j (zj) is obtained by the Mean Field method

q∗j (zj) =
expEi ̸=j [ln p(x, z)]∫
expEi ̸=j [ln p(x, z)]dzj

(13.26)
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Chapter 14

Logical Rule Learning

A rule is
A← f1 ∧ f2 ∧ · · · ∧ fL (14.1)

where f are literals and A is the head. A literal can be an atomic formula and its negation.

14.1 Sequential Convering
• Top-Down: Generate-then-test, generalize a general rule to its specified case. It starts with a wide-

ranged cover and contract the cover by adding new literals. This is appropriate for learning propositional
rules (i.e. zero-order rule).

• Bottom-Up: Data-driven, learn specified rules in a limited cover and relax the cover by removing
literals. This is appropriate for first-order rule.

14.2 Prunning
CN2 for pre-prunning exploits Likelihood Ratio Statistics to measure the difference between empirical dis-
tribution of training set {m+,m−} and the set of rules {m̂+, m̂−}

LRS = 2

(
m̂+ log

m̂+

m̂++m̂−
m+

m++m−

+ m̂− log

m̂−
m̂++m̂−

m−
m++m−

)
(14.2)

the desired LRS would be large amd close to 1. Reduced Error Prunning for post-prunning exploits the
replacement of samples. Incremental REP splits the dataset into training set and validation set, generates
a rule r on training set and prunes it to r′ by precision on validation set, ultimately removes the samples
covered by r′. Repeated Incremental Prunning to Produce Error Reduction (RIPPER) algorithm set

m̂+ + (m− − m̂−)

m+ +m−
(14.3)

as the metric of rule set instead of precision. For ri ∈ R, RIPPER generates r′ by IREP and specialize ri to
r′′.

14.3 First-Order Inductive Learner
First-order rule is learned from relational data, which is consists of atomic formulae of background knowledge
describing the attribute of samples and atomic formulae observed from examples.

∀A∀B(f(A,B)← g(A,B) ∧ h(A,B)) (14.4)
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FOIL exploits FOIL grain to select literals

FOILgain = m̂+

(
log

m̂+

m̂+ + m̂−
− log

m+

m+ +m−

)
(14.5)

that enhances positive samples.

14.4 Inductive Logic Programming
ILP introduces function expression to embed with predicates. Let B denote background knowledge, H be
the hypothesis model, E = E+ ∪ E− denote the training examples, the aim of ILP is

B ∪H |= E (14.6)

The dataset of ILP is instances with mutual relationships instead of features or attributes in datasets for
statistical learning. Induction is the inverse operation of deduction. The former generalizes from specialized
examples while the latter specializes from a general rule. In other words, induction generates extension
knowledge while deduction only exploits intrinsic knowledge.

14.4.1 Most General Unifier
We can substitute some variables to another

θ = {X1/X0, Y1, Y0}
C = f(X0, Y0) ∧ g(X0, Y0)

C ′ = Cθ = f(X1, Y1) ∧ g(X1, Y1)

(14.7)

Substitution has its composition θ ◦ λ and inverse θ−1. Unification is the operation that make some clauses
equivalent with each other via a substitution.

∃θ, C1θ = C2θ = C3θ (14.8)

then the clauses are unifiable and θ is the unifier. For a set of clauses W ,

∀θ, ∃δ, θ = δ ◦ λ (14.9)

then δ is the only Most General Unifier (MGU) of W . For C1 = A ∨ L1, C2 = B ∨ L2, if

∃θ, L1θ = ¬L2θ (14.10)

then
C = (C1 − {L1})θ ∨ (C2 − {L2})θ (14.11)

C1 = C/C2, C2 = C/C1 are resolution quotients. Hence, the aim of inverse resolution is obtaining C2 given
C,C1. For L1 ∈ C1,

∃ϕ1, (C1 − {L1})ϕ1 |= C (14.12)
then ϕ1 is the unifier of C1 to C. Let ϕ2 ∈ Domain(L1)−Domain(C1 − {L1}), θ2 ∈ Domain(L2),

6= L1ϕ1 ◦ ϕ2 = L2θ2 (14.13)

Let θ1 = ϕ1 ◦ ϕ2, first-order inverse resolution is

C2 = (C − (C1 − {L1})θ1 ∨ {¬L1θ1})θ−1
2 (14.14)

14.4.2 Least General Generalization
ILP exploits bottom-up strategy to generate a set of general rules from specialized groundtruth rules.As the
concept in the domain of logical induction, LGG is the inverse operation of MGU, which is the concept in
the domain of logical deduction.
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Algorithm 18: Least General Generalization
Input: first-order formulae r1, r2
Output: generalized fist-order formula r′

1 while rn 6= r′ do
2 for t← 1 to L do
3 if r1[t] = r2[t] then
4 rn[t]← r1[t]
5 else
6 rn[t]← V

7 L← |rn|
8 r′ ← rn

14.4.3 Inverse Resolution
Resolution principle can be discribed as

∃{L} ⊂ C1,∃{¬L} ⊂ C2, C = (C1 − {L}) ∨ (C2 − {¬L}) (14.15)

Hence, given C,C1 inverse resolution is solving C2

C2 = (C − (C1 − {L})) ∨ {¬L} (14.16)

There are 4 techniques of inverse resolution, let capital be conjunctive clauses

• Absorption:
p← A ∧B, q ← A |= p← q ∧B, q ← A (14.17)

• Identification:
p← A ∧B, p← A ∧ q |= q ← B, p← A ∧ q (14.18)

• Intra-construction:
p← A ∧B, p← A ∧ C |= q ← B, p← A ∧ q, q ← C (14.19)

• Inter-construction:

p← A ∧B, q ← A ∧ C |= p← r ∧B, r ← A, p← r ∧ C (14.20)

In esssential, intra-construction and inter-construction implement predicate invention by outputing new
atomic formulae.

14.4.4 Inverse Implication
Since the generalization of First-Order Logic is not equivalent with implication, inverse resolution is incom-
plete. For instance,

P ≡ p(f(X))← p(X)

Q ≡ p(f(f(X)))← p(X)

substitute X with f(x),

R ≡ p(f(f(x)))← p(X)

(14.21)

we can prove P → Q yet we couldn’t operate P with any substitution to make it equivalent with Q. In
another word, we can’t obtain P by generalizing Q. In contrast, the derivation from P to Q only exploits
the rule of P and this is self-resolution. Let Pθ ⊆ Q denote that P is the Least General Generalization of Q,
P → Q denote that P implicates Q, the complete implication is consist of the 3 following cases:
if P → Q,
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• Q ≡ 1

• Pθ ⊆ Q

• ∃R(Rθ ⊆ Q) and R can be obtained by inverse implication of P .

14.4.5 Inverse Entailment
Since a proposition is equivalent to its converse-negative proposition, we write B ∪H |= E as

B ∪ ¬E |= ¬H (14.22)

This approach converses solving H by induction to solving ¬H by deduction. Since the ¬H we obtain is a
specialized hypothesis based on one simgle example, we generalize it by

B ∪ ¬E |=⊥
(⊥|= ¬H) ∧ (H |= ¬ ⊥)

(14.23)

14.4.6 Propositionalize
Propopsitionalize-based converses relational dataset to attribute-value dataset. For instance, converse all the
relationships into propositions and assignment them with True or False.

14.5 Meta-Interpretive Learning
Meta-Interpretive Learning (MIL) is a variant of ILP. Similar to ILP, it takes background knowledge B
and examples E as input, generating hypothesis H. The B of MIL is BM ∪ BA, where BM is a definite
logic program that serves as meta interpreter, BA and H are ground definite higher-order logical programs.
E = 〈E+, E−〉 and they are positive and negative unit clauses respectively.

B ∪H |= E+

B ∪ ¬E+ |= ¬H
(14.24)

Let HB,E (i.e. the Hibrand Space for B, E) be the complete set of abductive hypothesis H. Algorithm A is
a Meta Interpretive Learner iff

∀B,E, H = A(B,E), E ∈ HB,E (14.25)

This kind abduction can produce Predicate Invention by introducing Skolem constants representing new
predicates. In contrary of the inverse resolution in ILP for predicate invention using a single clause as example,
predicate invention by abduction in Metagol exploits several positive and negative examples. Meta-rule, rule
of the rules in another word, is in the form of

1 metarule(Name, Substitutions , Head, Body)

where Substitutions contains all the predicates. The following are 5 commonly used metarules:
1 metarule(identity ,[P,Q],[P,A,B],[[Q,A,B]]). % rule of identity
2 metarule(inverse[P,Q],[P,A,B],[[Q,B,A]]). % rule of inverse
3 metarule(precon ,[P,Q,R],[P,A,B],[[Q,A],[R,A,B]]). % rule of precon
4 metarule(postcon ,[P,Q,R],[P,A,B],[[Q,A,B],[R,B]]). % rule of postcon
5 metarule(chain ,[P,Q,R],[P,A,B],[[Q,A,C],[R,C,B]]). % rule of chain

We can also put predicates in head into body to learn recursive rules
1 metarule(chain_recursive ,[P,Q],[P,A,B],[[Q,A,C],[P,C,B]])

Here we explore the learning procedure of Metagol with code:
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1 learn(Pos,Neg,Prog):-
2 prove(Pos,[],Prog),
3 \+ prove(Neg,Prog,Prog).
4 prove([],Prog,Prog).
5 prove([Atom|Atoms],Prog,Prog):-
6 prove_aux(Atom,Prog1,Prog3),
7 prove(Atoms,Prog3,Prog2).
8 prove_aux(Atom,Prog,Prog):-
9 prim(Atom),!,

10 call(Atom).
11 prove_aux(Atom,Prog1,Prog2):-
12 member(sub(Name,Subs),Prog1),
13 metarule(Name,Subs,(Atom:-Body)),
14 prove(Body,Prog1,Prog2).
15 prove_aux(Atom,Prog1,Prog2):-
16 metarule(Name,Subs,(Atom:-Body)),
17 prove(Body,[sub(Name,Subs)|Prog1],Prog2).

Metagol firstly tries to deductively prove an atom using complied background knowledge by delegating the
proof to Prolog call(Atom). If this deduction fails, Metagol tries to unify the atom with the head of a
metarule and tries to bind the higher-order variables in a metarule to symbols by substitution. Metagol saves
the resulting substitutions and tries to prove the body of the metarule. After proving all atoms, Metagol
generates the programs by projecting the substitutions onto their corresponding metarules. Afterwards,
Metagol checks the consistency of learned programs with negative samples. If it is inconsistent, Meteagol
backtracks to another branch of the SLD-tree.

14.6 Learning Higher-Order Logic
As aforementioned, a variable is first-order if it can be bound to a constant symbol or another first-order
variable. Then we have a variable is higher-order if it can be bound to a predicate symbol or another
higher-order variable. Let V1, V2 denote the set of first-order variables and higher-order variables respectively,
a metarule is a higher-order formula of the form

∃π∀µ← l1, . . . , lm (14.26)

where π ⊆ V1 ∪ V2, µ ⊆ V1 ∪ V2, π ∩ µ = ϕ. The definition of abstract is

f(A,B)← map(A,B, succ) (14.27)

where map is
map([], [], F )←
map([A|As], [B|Bs], F )← F (A,B),map(As,Bs)

(14.28)

where F is a universally quantified higher-order variable. The input of abstracted MIL is B = BC ∪
BI , E+, E−, M , where BC is the set of first-order horn clauses and BI is the set of higher-order defi-
nitions. The procedural distinction between them is that the former is proved deductively while the latter is
proved by meta interpretion. Hence, the returned hypothesis is

• ∀h ∈ H, ∃m ∈ M such that h = mθ where θ is a substitution that grounds all the existentially
quantified variables in m,

• H ∪B |= E+

• H ∪B| 6= E−

An invention is a predicate p/a that is in the predicate signature of H and not in the predicate signature
of B ∪ E+∪−. In other words, the invented predicate appears neither in background knowledge nor in the
training data. The following codes show the the commons and the distinctions between background knowledge
BC , interpreted background knowledge BI and metarule M respectively.

• Complied Background Knowledge BC :
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1 empty([]).
2 head([H|_],H).
3 tail([_|T],T).
4 last([A],A):-!.
5 last([_|T],A):-last(T,A).

• Interpreted Background Knowledge BI :
1 ibk(([map,[],[],F]:-[]))
2 ibk(([map,[A|As],[B|Bs],F]:-[[F,A,B],[map,As,Bs,F]])).
3 ibk(([fold,[],Acc,Acc,F]:-[])).
4 ibk(([fold,[A|As],Acc1,B,F]:-[[F,A,Acc1,Acc2],[fold,As,Acc2,B,F]])).
5 ibk([ifthenelse ,A,B,Cond,Then,_],[[Cond,A],[Then,A,B]]).
6 ibk([ifthenelse ,A,B,Cond,_,Else],[[not,Cond,A],[else,A,B]]).

• Metarules M :
1 metarule(monadic ,[P,Q],([P,A,A]:-[[Q,A]])).
2 metarule(identity ,[P,Q],([P,A,B]:-[[Q,A,B]])).
3 metarule(inverse ,[P,Q],([P,A,B]:-[[Q,B,A]])).
4 metarule(didentity ,[P,Q],([P,A,B]:-[[Q,A,B],[R,A,B]])).
5 metarule(precon ,[P,Q,R],([P,A,B]:-[[Q,A],[R,A,B]])).
6 metarule(postcon ,[P,Q,R],([P,A,B]:-[[Q,A,B],[R,B]])).
7 metarule(curry1 ,[P,Q,R],([P,A,B]:-[[Q,A,B,R]])).
8 metarule(curry2 ,[P,Q,R,S],([P,A,B]:-[[Q,A,B,R,S]])).
9 metarule(curry3 ,[P,Q,R,S,T],([P,A,B]:-[[Q,A,B,R,S,T]])).

10 metarule(chain ,[P,Q,R],([P,A,B]:-[[Q,A,C],[R,C,B]])).
11 metarule(tailrec ,[P,Q],([P,A,B]:-[[Q,A,C],[P,C,B]])).

A metarule is in the fragment M i
j if it has at most j literals in the body and each literal has at most i

arities. Given p predicate symbols and m metarules in M i
j , the number of programs expressible with n

clauses is at most O
(
(mpj+1)n

)
. For abstracted MIL programs, namely higher-order metarules with at

most k exsistentially quantified higher-order variables, the number of abstracted M i
j with n clauses is at

most O
(
(mpj+1+k)n

)
. Given a maximum program size nu, MIL has sample complexity (i.e. the number of

training samples required to achieve error less than ϵ with probability at least 1− δ):

su ≥
1

ϵ

(
nu lnm+ (j + 1)nu ln p+ ln(

1

δ
)
)

(14.29)

Similarly, given a maximum program size na the abstracted MIL has sample complexity:

sa ≥
1

ϵ

(
na lnm+ (j + 1 + k)na ln p+ ln(

1

δ
)
)

(14.30)

Hence, we have sa < su when
nu − na >

k

j + 1
na (14.31)

The proof procedure of Metagol-ho is silghtly different from that of Metagol:
1 learn(Pos,Neg,Prog):-
2 prove(Pos,[],Prog),
3 \+ prove(Neg,Prog,Prog).
4 prove([],Prog,Prog).
5 prove([Atom|Atoms],Prog,Prog):-
6 prove_aux(Atom,Prog1,Prog3),
7 prove(Atoms,Prog3,Prog2).
8 prove_aux(Atom,Prog,Prog):-
9 prim(Atom),!,

10 call(Atom).
11 prove_aux(Atom,Prog1,Prog2):-
12 ibk((Atom:-Body)),
13 prove(Body,Prog1,Prog2).
14 prove_aux(Atom,Prog1,Prog2):-
15 member(sub(Name,Subs),Prog1),
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16 metarule(Name,Subs,(Atom:-Body)),
17 prove(Body,Prog1,Prog2).
18 prove_aux(Atom,Prog1,Prog2):-
19 metarule(Name,Subs,(Atom:-Body)),
20 prove(Body,[sub(Name,Subs)|Prog1],Prog2).

Metagol-ho works in the way same to Metagol except for the use of IBK. It firstly proves the atoms deductively
and if it fails, Metagol-ho tries to unify the atom with a head in the clause of IBK ibk((Atom:-Body)) and
tries to prove the body of the matched definition. Failing this, Metagol-ho continues to work in the way same
as Metagol.
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Chapter 15

Reinforcement Learning

15.1 Markov Decision Process
Recall Markov Chain, it can be interpreted as a decision process in essential. Let x ∈ X be status variable,
a ∈ A be action variable, P : X × A × X 7→ R be transformation pobability, R : X × A × X 7→ R be
transformation reward,

M = 〈X ,A,P,R〉 (15.1)
is the form of markov decision. Reinforcement Learning aims to learn a policy π, then we obtain

a = π(x) (15.2)

Policy can be deterministic π : X 7→ A or probabilistic π : X ×A 7→ R and∑
a

p(π, a) = 1 (15.3)

The desired policy maximizes the expectation of reward, the accumulated reward at T step is

E[
1

T

T∑
t=1

rt] (15.4)

or the γ-fold accumulated reward

E[
∞∑
t=0

γtrt+1] (15.5)

15.2 Model-based Learning
If M is given, we obtain a model-based learning task.

15.2.1 Policy Estimation
Let V ϕ(x) (state value function) be the accumulated reward under policy π, Qπ(x, a) (state-action value
function) be the accumulated reward with action a then use policy π. Hence, the accumulated reward after
T steps is

V π
T (x) =

∑
a∈A

π(x, a)
∑
x′∈X

P a
x→x′

(
1

T
Ra

x→x′ +
T − 1

T
V π
T−1(x

′)

)
(15.6)

this is the Bellman Equation. The accumulated γ-fold reward is

V π
γ (x) =

∑
a∈A

π(x, a)
∑
x′∈X

P a
x→x′

(
Ra

x→x′ + γV π
γ (x′)

)
(15.7)
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Hence, status-action value function is

Qπ
T (x, a) =

∑
x′∈X

P a
x→x′

(
1

T
Ra

x→x′ +
T − 1

T
V π
T−1(x

′)

)
Qπ

γ (x, a) = sumx∈XP a
x→x′

(
Ra

x→x′ + γV a
γ (x

′)

) (15.8)

15.2.2 Policy Updating
If the current policy is suboptimal, we update it by

π∗ = argπ maxV π(x) (15.9)

Hence,
V ∗
T (x) = max

a∈A

∑
x′∈X

P a
x→x′

(
1

T
Ra

x→x′ +
T − 1

T
V ∗
T−1(x

′)

)
V ∗
γ (x) = max

a∈A

∑
x′∈X

P a
x→x′

(
Ra

x→x′ + γV ∗
γ (x

′)

)
V ∗(x) = max

a∈A
Qπ∗

(x, a)

Q∗
T (x, a) =

∑
x′∈X

P a
x→x′

(
1

T
Ra

x→x′ +
T − 1

T
max
a′∈A

Q∗
T (x

′, a′)

)
Q∗

γ(x, a) =
∑
x′∈X

P a
x→x′

(
Ra

x→x′ + γmax
a′∈A

Q∗
γ(x

′, a′)

)
(15.10)

and these are Optimal Bellman equations. Ultimately, we update the policy by

π′(x) = arga∈A maxQπ(x, a) (15.11)

Model-based reinforcement learning doesn’t have generalization capacity since it only finds the optimal policy
for current state.

15.3 Model-free Reinforcement Learning
In most real scenes V is unknown.

15.3.1 Monte Carlo Reinforcement Learning
An alternative of the known model is sampling repeatedly to approximate status-action value function. We
expolit ϵ-greedy strategy that

πϵ(x) = (1− ϵ)π(x) + ϵUniform(a ∈ A) (15.12)

Hence, we obtain the on-policy algorithmOn-policy algorithm relies on the initial policy, we can drag two
trajectories of π, π′. We can estimate the trajectory of π from that of π′ by importance sampling, namely
weight the reward via the propobabilities generating the ith trajectory

Q(x, a) =
1

m

m∑
i=1

Pπ
i

Pπ′
i

ri (15.13)

The probability of generating a specialized trajectory under policy π is

Pπ =

T∏
i=0

π(ai, xi)P
ai
xi→xi+1 (15.14)
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Algorithm 19: On-Policy
Input: A, x0, T
Output: π

1 Q(x, a)← 0, count(x, a)← 0, π(x, a)← 1
|A|

2 for s do
3 generate 〈x0, a0, r1, . . . , aT−1, rT , xT 〉
4 for t← 1 to T − 1 do
5 R← 1

T−tsum
T
i=t+1ri

6 Q(xt, at)← Q(xt,at)×count(xt,at)+R
count(xt,at)+1

7 count(xt, at)← count(xt, at) + 1

8 π(x, a)← (1− ϵ) argmaxa′ Q(x, a′) + ϵUniform(a ∈ A)

in fact, the transformation probability is not essential

Pπ

Pπ′ =
T−0∏
i=1

π(xi, ai)

π′(xi, ai)
(15.15)

Algorithm 20: Off-Policy
Input: A, x0, T
Output: π

1 Q(x, a)← 0, count(x, a)← 0, π(x, a)← 1
|A|

2 for s do
3 generate 〈x0, a0, r1, . . . , aT−1, rT , xT 〉
4 if ai = π(x) then
5 pi ← 1− ϵ+ ϵ

|A|
6 else
7 pi ← ϵ

|A|

8 for t← 1 to T do
9 R← 1

T−t

∑T
i=t+1 ri

∏T−1
j=i

1
pj

10 Q(xt, at)← Q(xT ,at)count(xt,at)+R
count(xt,at)+1

11 count(xt, at)← count(xt, at) + 1

12 π ← argmaxa′ Q(x, a′)

15.3.2 Temporal Difference Learning
Temporal Difference algorithm updates the status-action reward function after sampling an entire trajectory.

Qπ
t+1(x, a) = Qπ

t (x, a) +
1

t+ 1

(
rt+1 −Qπ

t (x, a)
)

(15.16)

Hence,
Qπ

t+1(x, a) = Qπ
t (x, a) + α

(
Rπ

x→x′ + γQπ
t (x

′, a′)−Qπ
t (x, a)

)
(15.17)

15.3.3 Value Function Approximation
Given status space X = Rn, the linear function of status is

Vθ(x) = θTx (15.18)
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We minimize the MSE between Vθ and V π via gradient descent and obtain

θ = θ + α
(
V π(x)− Vθ(x)

)
x (15.19)

Hence,
θ = θ + α(r + θTx′ − θTx)x (15.20)

15.4 Imitation Learning
15.4.1 Behavior Cloning
Given a set of trajectories made by the expert, where

τi = 〈si1, ai1, . . . , sini+1〉 (15.21)

we extract status-action pairs from all trajectories to construct a new dataset and learn the policy from it
directly. However, this simple method prones to overfitting.

15.4.2 Inverse Reinforcement Learning
Given a set of trajectories made by the expert, inverse reinforcement learning aims to find a value function
that optimally matches the dataset. Let R(x) = wTx, the accumulated reward is

ρπ = E

[ ∞∑
t=0

γtwTx|π
]

(15.22)

We sample the optimal policy w∗ from dataset and calculate the mean of all status on each trajectory x,

w∗T (x∗ − xπ) ≥ 0 (15.23)

Ultimately we obtain
w∗ = argw max min

π
w∗(x∗ − xπ)

subject to ‖w‖ ≤ 1
(15.24)

Algorithm 21: Inverse Reinforcement Learning
Input: A, x0, T, D = {τ1, . . . , τm}
Output: w∗Tx, π

1 x∗ ←Mean(X )
2 π ← Random(π)
3 for t do
4 xπ ←Mean(Sample(X ))
5 w∗ ← argw max minπ w

∗(x∗ − xπ) subject to ‖w‖ ≤ 1

6 π ← Optimal〈X ,A,w∗Tx〉
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