Seminar: Learning to Generate SAT Formulas

Yu-Zhe Shi

April 6, 2020

Author Profiles

» Jiaxuan You, 3rd year PhD, CS, Stanford;
https://cs.stanford.edu/~jiaxuan/

» Haoze Wu, 2nd year PhD, CS, Stanford,;
https://anwul219.github.io/

» Clark Barrett, Associate Prof, CS, Stanford;
http://theory.stanford.edu/~barrett/

» Raghuram Ramanujan, Assistant Prof, MATH-CS, Davidson;
https://www.davidson.edu/people/raghu-ramanujan

» Jure Leskovec, Associate Prof, CS, Stanford.
https://cs.stanford.edu/people/jure/

https://cs.stanford.edu/~jiaxuan/
https://anwu1219.github.io/
http://theory.stanford.edu/~barrett/
https://www.davidson.edu/people/raghu-ramanujan
https://cs.stanford.edu/people/jure/

Prerequisites: SAT

» SATisfiability problem is the first NP-Complete problem
proved.

> A SAT formula ¢ is a composition of Boolean variables x;
connected with logical operators V, A, —.

Ix;, ¢(x;)) = 1,= ¢ is satisfiable. (1)

» CNF(Conjunctive Normal Form):
(x1VxaV...)A(xcVx2V...)

Prerequisites: LCG

» LCG(Literal-Clause Graph): Node«Literal x;, Clauses x; A x;.
Edge< x; & x; V x;. LCGs can be presented in Bipartite
graphs where the vertex set can be splitted into a vertex set of
literals and a vertex set of clauses.

G=(V,€),=V=VuW

2
Vl:{/17---;ln}7v2:{C17---7Cm} ()

where there are n literals and m clauses in the LCG.

Prerequisites: Graph Splitting and Merging

NodeSplit(u, G) = (u, v, G)
NodeMerge(u, v, G) = (u, G)

Hence, the split-merge operation is symmetric.

Node splitting sequence

Node split @
y o .
Bipartite @ Set of
Graph Trees
Q—©
©
O
ac
@
G,
Node merge @
. &———
Bipartite © Set of

Graph Node merging sequence

A Toy Example: LCG in Bipartite Representation

(x1 Vx2) A (x2V x3)

V1 = Xx1,X2,X3, Vo = X0 A\ X3,X1 \ X2

A Toy Example: Split Iteration 2

Note: Deg(xo V x3) =2 > 1, Deg(xxaV x1) =2>1
Split G; in next 2 iterations!

A Toy Example: Split Terminated

Note: Deg(xo V x3) = 1, Deg(x2 V x1) =1
Terminate splitting and Save G;_1 as Gp!

Motivation and Intuition

» We want to generate an LCG "like” G;, but larger than G;.
» Can we learn LCG directly from G;? Nope!
> Maybe... We can learn what to merge from meta LCG.

What to learn?

p(Gi|Gi—1) =?

Learn p(G) lteratively

n

p(G) =[] r(GiGi, ...

i=1

where G;_1 denotes intermediate results.

, Giz1)

How to learn?

» What distincts an LCG from others?

» It merges specific nodes!

Embedding via GraphSAGE

p(GiGi—1) = p(NodeMerge(u, v. Gi_1)|Gi-1)

. (8)
= Multinomial(hTh,/Z|Vu, v € V2GI_1)

where Z is a normalization term.

Embedding via GraphSAGE

» 3 node types to be embedded: positive literals, negative
literals, clauses.

» embedding of node u at n-layer of GraphSAGE

n!, = MeanPooling(ReLU(Q'h, + ¢'|v € Neighbor(u)))
i = ReL UUW/ CONCAT(h!, n))

Oops...

> If we enumerate any two clause nodes in a single iteration,
here we have C(4,2) = 6 pairs.

» An LCG in practice may have 10° nodes or more, C(10°,2)...
» Computing Z is ... a disaster.

Pair Proposal Strategy

> We randomly select a node pair and decide whether to merge!
» Reduce the multinomial distribution to binary distribution!

» The selected pair shouldn't be empty.

Now we begin to merge!

» p(Gj|Gj_1) to a joint distribution
p(Gi, u, v|Gi—1) = p(u, V| Gi-1) p(Gil Gj-1, u, v)
= p(u, v| Gi—1) p(NodeMerge(u, v, Gj-1)|Gj-1, u, v)

= Uniform({(u, v)|Vu, v € V") Bernoulli(o(h] h,)|u, v)
(10)

Training: Positive Sampling

Choose a random node s with Deg(s) > 1.

Training: Positive Pair

Split it into (ut, v"), thus it is a positive pair.

Training: Negative Sampling

Select another node in Vzc”l

negative pair.

as negative sample, thus u™, v~ is a

Training Loss

A binary classification problem.

L =By [log(o(hyh))] —Ey - [log(L —a(hjh,)] (11)

The end of training and the beginning of inference

Note: Deg(xo V x3) = 1, Deg(x2 V x1) =1
Save Gj_1 as Gp!

Inference

Select pairs with high similarity in parallel. Although biased, the
result is resonable.

Experimentl

» Similarity of properties between training graph and generated
graph.
» Two properties for Graph statistics:
» Modularity
» Clustering Coefficient
Hence, we can measure the how much does the generated
graph maintain the properties of training data.

Experimentl: Graph Statistics

Table 1: Graph statistics of generated formulas (mean =+ std. (relative error to training formulas)).

VIG VCG LCG
Method
Clustering Modularity Variable o, Clause a, Modularity Modularity
Training 0.5040.07 0.584+0.09 3.57+1.08 4.53+1.09 0.7440.06 0.6340.05
CA 0.331+0.08(34%) 0.48+0.10(17%) 6.30+1.53(76%) N/A 0.6540.08(12%) 0.53+0.05(16%)

PS(T=0) 0.82+0.04(64%) 0.72+0.13(24%) 3.25+0.89(9%) 4.70+1.59(4%) 0.86+0.05(16%) 0.64-+0.05(2%)
PS(T=1.5) 0.30£0.10(40%) 0.14+0.03(76%) 4.19£1.10(17%) 6.8641.65(51%) 0.40+0.05(46%) 0.41+0.05(35%)
G2SAT 0.41+0.09(18%) 0.54+0.11(7%) 3.57+1.08(0%) 4.79+2.80(6%) 0.68+0.07(8%) 0.67+0.03(6%)

Real - o wee oo “ e
G2SAT| ® commme —— wmma —
PS(T=0) P) - @ cmemme s © o= e o
PS(T=15)| 0@ o @ —
CA © T Emame mmmemem TS =
02 04 06 08 0.2 0.4 06 08 10 04 0.6 0.8 10
VIG Clustering Coefficient VIG Modularity VCG Modularity

Figure 2: Scatter plots of distributions of selected properties of the generated formulas.

Experiment2

» Comparing the performance of SAT solvers both on real data
and generated data.

» Training deep SAT solvers on generated data boosts their
performance on real data.

Experiment2: SAT Solver Performance

Table 2: Relative SAT Solver Performance Table 3: Performance gain when using generated
on training as well as synthetic SAT formulas. SAT formulas to tune SAT solvers.
Method Solver ranking ~ Accuracy Method Best parameters Runtime(s) Gain
Training Iy, 3,11, Re, R3, R1 100% Training (0.95,0.9) 2679 N/A
CA Iy, I3,11,Ry, R3, R 100% CA (0.75, 0.99) 2617 2.31%
PS(T=0) Rs,I3,Rs,I,I1,R1 33% PS(T=0) (0.75, 0.999) 2668 0.41%
PS(T=1.5) R3, Ry, 13,11, 15, Ry~ 33% PS(T=1.5) (0.95,0.9) 2677 0.07%

G2SAT Iy,15,13,Re, R3, Ry 100% G2SAT (0.95, 0.99) 2190 18.25%

Summary

» The training objective of the model is to decide "what node
to merge”. In essence, the model learns the intra-clause
pattern and inter-literal pattern from training data.

» Training phase is node splitting while inference phase is node
merging.
» To prune hypothesis space, G2SAT relaxes p(G;|Gi-1) to

p(Gi, u,v|Gj_1), thus transforming multinomial distribution to
binary distribution.

Inspiration

» Decomposition: When the objective is hard to learn, we can
solve the problem iteratively via intermediate objectives.

» Hybrid Model: We can use neural networks to obtain
appropriate feature embeddings. This work doesn’t exploit the
reciprocation between statistical learning models and logical
learning models.

» Reduce multinomial distribution to binary distribution.

» Reduce enumerative traversal in the heposythesis space to
random selection when the operation is commutative (i.e. the
result is independent of operation sesquence). (Maybe similar
to changing sliding window to anchor boxes in CV?)

