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Overview

Concepts of program synthesis.

Domain Specific Language.

>

>

» Enumerative Search.
» Constraint Solving.
>

Stochastic Search.



What is Program Synthesis?

Automatically.

Find programs from underlying programming language.
Satisfy user intent explained by constraints.
Second-Order.

Domain-Specific Language (constrast to General Purpose
Language).
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Dimensions

» User intent:
» |ogical Specification between inputs and outputs.
» Input-output Examples.
» Step-by-step description (Trace).
» Partial program, relative programs.
» Search Space:

» Operators.
» Control Structure.

» Search Technique:
» Enumerative Search (bottom-up).
» Deduction (top-down).
» Constraint Solving.
> Statistical Techniques.
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Established Researchers & Teams

> PROSE Team, Microsoft: Sumit Gulwani, Microsoft,
Obtained Ph.D. at UC Berkeley.
https://www.linkedin.com/in/sumit-gulwani/

» Sketch, MIT: Armando Solar-Lezama, CSAIL, MIT, Obtained
Ph.D. at MIT. https://people.csail.mit.edu/asolar/
(Solar-Lezama + J.B.Tenenbaum = Creativity!)

» STOKE, Stanford: Alex Aiken, CS, Stanford, Obtained Ph.D.
at Cornell. http://theory.stanford.edu/~aiken/


https://www.linkedin.com/in/sumit-gulwani/
https://people.csail.mit.edu/asolar/
http://theory.stanford.edu/~aiken/

Task: Semantic Parsing

>

>

StackOverflow Question Code Dataset (SQCD): Semantic
Parsing, English to Python.

CoNalLa: The Code/Natural Language Challenge: Semantic
Parsing, English to Python.

e. g {

"intent": "How do I check if all elements in a
list are the same?",

"rewritten_intent": "check if all elements in
list "mylist” are the same",

"snippet": "len(set(mylist)) == 1",
"question_id": 22240602

}

> WikiSQL: Semantic Parsing, English to SQL.



Task: Algorithmic Synthesis

» NAPS: Dataset containing preprocessed problems from
algorithmic competitions along with imperative descriptions
and examples.

e.g [

input = [1, 2, 5, 4, 6, 3],
output = [1, 4, 9, 16, 25, 36]
]



Task: Planning

» Karel Language and Benchmark: Robot planning.

Underlying Program
(Not used by model)

Iy 0, 0

turnRight ()

» Abstracting and Reasoning Challenge: Imitation Learning.




PBE vs. PBD

» Programming by Example: A single input-output example
factorial(6) = 720.

» Programming by Demonstration: An example with trace
factorial(6) = 6x(5*(4x(3*(2x1))))=720.



Challenges

» How do you find a program that matches the observation?

» How do you know the program you found is the one you were
actually looking for?

» Intractability of Programming Space: Exponential growth of
non-trivial search space.

» Diversity of User Intent: Specification is as sophisticated as
programming; User intent is ambiguous.



Domain Specific Language

» Subsets of general-proposed language.
» No side effects(Pure functions).
» Concise and Experissive.



Abstract Syntax Tree

» The most common representation of a program.

> expr:=term | termt+expr
term:=(expr) | term*term | N

> data AST = Num Int | Plus AST AST | Times AST AST



Context-free Grammar

Definition
Context-free Grammar G = (V, X, R, S)
> Vs a finite set of non-terminal symbols.
> > is a finite set of terminal symbols.
> R is a finite set of rules of the form X — Y1Ys2...Y, XeV,
n>0, Y e (VUx)
» Sis a distinguished start symbol.



CFG: Left-most Derivations

Definition
Derivations s1s5...s,
> S1 = S
> 5, e XX CY)
» s; is derived from s;_1 by picking the left-most non-terminal X
in s;_1 and replace X by the rule in {X — g} € R



Probabilistic CFG

» 7¢ is the set of all possible derivations under grammar G.

Definition
PCFG
» G=(V,L,RYS)
> Parameter g, VX € V.3 5cpa-x (e = B) =1 where
q(ae — ) denotes the conditional probability of choosing rule
«a — [ in a derivation.
» For derivation t in 7 containing rules a3 — S1,...,a, — B,

p(t) = H (e — Bi) (1)



An Example

» V' = {Init, Op, Dest, Num, Equal, Predecess, Success}

» ¥ ={0,1}

» R,g={S— Init: 1, Init - Num: 0.5, Init - Op : 0.5, Op —
Equal : 0.5, Op — Predecess : 0.25, Op — Success : 0.25, }

> S



Enumerative Search

» Top-Down Tree Search: From root to input specification.

v

Bottom-Up Tree Search: From leaf to output speciication.

» Bidirectional Search: Combination of top-down and
bottom-up search.

» Offline Exhaustive Enumeration and Composition: retrive the
program mapping to input-output pair.

reduce (mapinAx.x+5) 0dx. Ay.x +y
reduce

Bottom Up map o P Top Down



Algorithm: Bottom-Up Search

v

Guiwani et al, Recursive Program Synthesis, CAV'13.
Start with terminals!

Prune the set of primitives at every step by eliminating those
that are deemed to be observationally equivalent.

Observationally Equivalent: Expressions that have the same
output given same input.

Drawbacks: Scalability.



Algorithm: Synthesis through Unification (STUN)

>
[

>

Alur et al, Synthesis through Unification, CAV'15.

No longer looking for a program thats works for all inputs in
one shot.

Search for multiple programs that work for different situations.
An initial best-effort search to produce a program that works
correct on some inputs.

Input fails: improve on current program OR reconstruct a new
program.

Searching heuristic: When fail on an input, search for a better
solution with that input.

(12)>

STUN at a glance @3

@3) >
Find Better
Progam Y |

oW

8.1) >

Best Effort
Synthesize
—_—)




Algorithm: Top-Down Search

» Feser et al, Synthesizing data structure transformations from
input-output examples, SIGPLAN'15.

» Using the production rule of the grammar to generate
candidate programs.

» Expand the expressions. First prune the expressions with the
undesired types.

» Further pruning with additional deduction rules: Derive rules
from known functions to unknown subexpressions:

» Rules tell you that a candidate is not going to work.
» Rules tell you that how to propagate input/outputs to
subexpressions.
e.g. map x lambda y.expr, if the input-output doesn’t have
same length...



Constraint Solving

Encoding the specification and syntactic program restrictions into
a single formula.
» Component-Based Synthesis:
» End-to-end SAT encoding.
» Sketch generation and completion: Program with holes.
> Solver-aided Programming: high level program argumented
with constructs.

» Inductive Logic Programming.



Algorithm: Sketch

» Armando Solar-Lezama, The Sketching Approach to Program
Synthesis, APLAS'08; Armando Solar-Lezama, Program
sketching, 1JSTTT'13.

» Parametric Program: different values of the parameters
correspond to different programs in the space.

» Unknown Constants: 77

» Generator Function: generator int gen(int i){if(?7)
return i*?? + ?7;}

» Symbolic Execution: Run a program and produce symbolic
values and constraints.

» Structural Hashing: Identify common sub-expressions and
represent them in the same node.

> Representation of sets: Represent set ¢ as predicate Pg(¢) iff
ped



Algorithm: Sketch

» Transform constraints to Conjunctive Normal Form.
» One-hot encoding indicating the true value.
» Solving SAT Problems: SAT Solvers based on DPLL.

SAT Solver

SAT solving in a nutshell

Constraintis a CNF Clause

Ky VM V Ky VM VN W
Constraint database %y i , 3 V Xy 5 ¥ Xg

X “Xg

Ky VA VK s V Ky V Ky

EAS R A

s



Improvements on SAT Solver

» Conflict Driven Clause Learning(CDCL), GRASP SAT Solver:
» When contradict, trace back a small set of assignments that
lead to the contradiction.
» Define a conflict graph that shows the possible conflict clauses.
» Two Literal Watching, Chaff SAT Solver:

» There is no need to keep track of all unassigned literals
because only the last two unassigned literals determines the
'action’ of the clause.

» For every clause, we keep track of two literals that haven't
been set.

» Heuristic on selecting variable, Variable State Independent
Decaying Sum (VSIDS):
» Keep a score for every variable that is additively dumped based
on how much it is used.
» Decayed over time. (Expontional Moving Average)



SMT Solver

» Satisfiability Modulo Theory:

>

Goal: Either Find an assignment to satisfy a logical formula or
prove the unsatisibililty of a logical formula.

> Leverage SAT Solver.

>

>
>

Initially take all predicates and replace them with boolean
variables.

Eager Approach: Explicitly generate boolean constraints.

Lazy Approach: Get a solver that interacts with the SAT solver
and incrementally add constraints to the boolean abstraction.



NEQ: Conflict-Driven Learning

» Feng et al, Program Synthesis using Conflict-Driven Learning,
PLDI'18.

» In SAT/SMT solving, NEO learns a root reason for the failure
of branch search (conflict) and add it to the constraints to
avoid similar mistakes.

» eg. [1,2,31—[2,4], eliminates functions like map, sort,
reverse, which are called equivalent modulo conflict.

> Key Procedures:
» Decide: which hole to fill and how to fill it with DSL.
» Deduce: Keep Track of use Lemmas.
» Conflict Analyze: Find the root cause (minimal unsatisfiable)
of the failure and learn new lemmas.

Specificati Partial program (@
pecification Decide Deduce
New partial program

DSL grammar
& semantics

All holes
Knowledge base, filled
(initially empty)

Solution No solution



Stochastic Search

» Markov Chain Monto Carlo.
» Genetic Programming.

» Machine Learning.

» Neural-Guided Synthesis.



Algorithm: MCMC-MH (Stochastic SyGus Solver)

» Alur et al, Syntax-guided synthesis, FMCAD'13.

» Score function of expressions: Distribution over the domain of

programs.
= e—O.SC(e) (2)

where ((e) denotes the number of examples for which e is
correct.

» The probability of acception:

xtx*
Pa(x*|xt™1) = min(1 ()((t z)lg(x*b'(t 2)>) o
, in this case
Pa(e, €) = min(lv 77:((:’))> @

» Shortcomings: Scoring Function isn't precise enough; The
proposal distribution only make big changes to the program.



Algorithm: More Specified AST Synthesis

» Schkufza et al, Stochastic superoptimization, ASPLOS'13.
> 5 kinds of probability.
>

7(Prog) = exp(—3(Crct( Prog, Prog')) + perf{ Prog, Prog'))
(5)
» Correct measures the Hamming Distance between outputs;
Performance serves as cost functions. First ignore the
Performance term to obtain large steps.

The proposal Distribution

Transitionsthat change one opcede

Transitionsthat replace Transitionsthat change

one instruction with a
NOOP

Transitionsthatswap
two instructions

itionsthat replace one instruction with another



Search Process with an Interpreter

>

>

>

| 4

Ellis, Solar-Lezama and Tenenbaum, Write, Execute, Assess:
Program Synthesis with a REPL, NIPS'19.

Challenge: Tiny changes in syntax lead to huge changes in
semantic.

Read-Evalutaion-Print-Loop: propose new code to write,
assess the prospects of codes written-so-far.

REPL serves as a bridge to apply Markov Decision Process
jointly on both syntax space and semantic space.

Sequential Monte Carlo Method: Maintaining the
policy-desired programs.

Spec
3

Al g,l;mf -
Sp«‘C REPL # R] PL - Rl PL l @ @

Syntactic Ry (C,RED+RY;

e L () I [ T ’ L “{p\v)
e oroo{ Sy ® i



Stochastic Search: Genetic Programming

» Katz et al, Genetic Programming and Model Checking:
Synthesizing New Mutual Exclusion Algorithms, ATVA’08.
P 4 operations: crossover, mutation, duplication, deletion.
» Mutation: Random change.
» Crossover: Useful subprograms from other programs.
» Hierarchical programs vary on different sizes and shapes.
» A set of terminal and function symbols.
» Fitness measure.
» Search parameters: population, number of expressions,
probability of the 4 operations.
» Termination criterion.



Crossover

parent, parent,
VN X/*\
/N /N V.
z 2 X 4 y 2
v v 4

offspring, offspring,
T T
/N SN /N
y 2 x 4 Z 2

Figure: Crossover



Mutation

parent offspring
" L
CN LN /N SN
Z X z 2 X =
/ N\
2 y

Figure: Mutation



Stochastic Search: Machine Learning

> Menon et al, A Machine Learning Framework for
Programming by Example, ICML'13.

> Learn the weights for the rules R in PCFG G.

» The weights conditioned on the input-output examples are
trained offline.

» Hand-crafted features. e.g. sort_cue whether the output
strings are sorted.

Anthiony: Hopkins Anthony Hopkins (1)

Al Pacino 4
Tom Hanks — ?1 P;:;;o Eé;
Tom Hanks om 2

Nicolas Cage (1)

Nicolas Cage

Production Probability | Production Probability |
P—join(LIST,DELIM) 1 CAT—LIST 0.7
LIST—split (x,DELIM) 0.3 CAT—DELIM 0.3
LIST—concatList (CAT,CAT,CAT) 0.1 DELIM—"\n" 0.5
LIST—concatList ("(",CAT,")") 0.2 DELIM—" " 0.3
LIST—dedup (LIST) 0.2 DELIM—"(" 0.1
LIST—count (LIST,LIST) 0.2 DELIM—")" 0.1




Bayesian Program Synthesis

» Form our belief in the relative likelyhood desired by the user
(priori) and update our belief with new evidence (I/0
examples).

» A strict generation of the original program synthesis
formulation. Let O be Observation Evidence, f denote desired

program
U(e), Vee O, Con(OU )

P(Olf) = (6)

0, Jee O0,-Con(OUf)

P(flin, out]) = P(f)  T[  Ploutilf, i) (7)

[ini,out]€E



Unsupervised Learning

>

>
>

Ellis, Solar-Lezama and Tenenbaum, Unsupervised Learning
by Program Synthesis, NIPS'15.

Both the inputs and the functions are unknown!
Learning noisy Visual Concepts.

Objective of Unsupervised Learning:

min — log PHf) — Zlog 42l (1) + log Pi(1))  (8)

flicE

where the three terms are length of generated program, data
reconstruction error and input encoding length respectively.

Generating SMT Formulae that computes description length
of program and the output given an input.

Additional Constraint on SMT Solver: Generating description
as short as possible.



Unsupervised Learning: To Marginalize or Not to
Marginalize?

» Should we marginalize over the inputs or not?
» Marginalize: find the P(f,[in;j]) that maximizes P(f, [inj]|[out]]).
> Not Marginalize: maximize

P(fllouti]) = > _jiny P(f, lini]|[outi]) P([ini])

» Optimize the joint distribution!



Algorithm: Length Minimization

g 1
Zelen() ¢
e , e F
P(f)=1472 (9)
0, otherwise

» Conventional Bottom-Up Search guarantees the minimization
of height of the search tree.

» However, the improvements of Bottom-Up Search and
Top-Down Search no longer guarantees the minimization.



Algorithm: Bayesian Sampling

>

>

Ellis, Solar-Lezama and Tenenbaum, Sampling for Bayesian
Program Learning, NIPS'16.

Form the synthesis problem into SAT Solving problem.
Instead of search for one program, approximately sample the
program space and incrementally upgrate the SAT Solver.

The example follows p-distribution, we aim to sample a g(-) in
program space that has low KL-Divergence from p(-).

d serves as the threshold of description length of the program.

q(x) o< 2, M <d A(x) o Lo <d
2= otherwise -+ otherwise

(10)
where A(x) is the acception ratio of an expression.

y denotes the auxiliary assignments of program space where
yi=1if x| < d r(x) =32, rxy), a(x) = A(x)r(x)



Stochastic Search: Neural Program Synthesis

> Key idea: Developing a continuous representation of the
atomitic operations of the network.

» End-to-end training/Reinforcement Learning.

» Shortcomings: Weak Interpretibility, Resource Consuming.



Neural FlashFill

» Parisotto et al, Neruo-Symbolic Program Synthesis, ICLR'17.

» Discoverying input substrings copied to output:
Cross-Correlation based encoder presenting a continuous
representation between 1/0.

» Recursive-Reverse-Recursive Neural Network (R3NN):
Constructing programs incrementally.



Neural FlashFill

1/0 Encoder

Input Gen Rules {\:'m
3

(a) Training Phase

b(root) = "1}”(5 - e(n2))

S—e

b(n2) = 0(Wie ¢ op2 ¢)d(n1), $(0P2), b(e)]) @ e—eop2e
e—eop2e

b(ng) = 0(W(e — ¢ op2 )[(e).
b(op2), die)))
e op2 ¢ blop2) b(e)

Tt
de) d0p2) de)
(a) Recursive pass

'(n2) = 0(G(s -~ g)[b(root)))
[$'(n3),$'(na),$'(N5)] = 0(Gie — ¢ op2 o)[¢'(N2)])

Learnt program

(b) Test Phase

(root)
|

(o) S—e

e—eop2e

e o2 e

ool
d'(ng) $'(n7) d'(ng)
(b) Reverse-Recursive pass



Neural RAM

» Kurach and Andrychowicz et al, Neural Random-Access
Machines, ICLR’16.

» Learns a circuit composed with a given set of modules.

» Obtain continuous representation of all modules, learn a
controller.



Neural RAM

outputs of
previous
registers modules

] Jrala ]

Ioi—l

binarized

registers

memory tape

0;




Deep Coder
> Balog et al, Deep Coder: Learning to Write Programs,
ICLR'17.

» Encode the features of specification, then decodes it to a
vector, where every dimension corresponds to the probability
of an element of the grammar.

» Learns a distribution over the candidate functions.

» Use the distribution to guide a depth-first top-down
enumerative search.

FILTER
SORT
REVERSE

o | TAKE
i | brOP

o | Access
& | ZPWITH
o | scant1
i | MIN

i | Max

o | counT

o | MINIMUM
o | MAXIMUM
o | sum

o |+

,_.
| »




Learn from Noisy Example

» Devlin et al, RobustFill: Neural Program Learning under Noisy
1/0, ICML'17.

» An end-to-end differentiable version of FlashFill that's trained
on a large volume of synthetically generated tasks.

» Attention RNN Representation of 1/0O examples.

Single-Example Sub-Network
Basic Seq-to-Seq Anenuon A

Attentmn B Atcentmn C

Multi-Example Pooling

5 S 5 MaxPool

.......
()& &



Infer Sketch

» Nye, Hewitt, Tenenbaum and Solar-Lezama, Learning to Infer

Sketch, ICML'19.

» Specifications that human can most easily provide.

» Generating Sketch from example or nature language:
seq-to-segq-RNN with Attention.

P> Enumerative search guided by a recognizer that predicts the
likelihood of the program filling in the hole.

£S5

Program spec, X

Recognizer,
ry(X, )
d Production probabilities, #
or, |~ Count >0 (Map (HOLE)) Count >0 (Map +1 input)

Program sketch, s Program synthesizer Full program,



Reinforcement Learning

v

Verma et al, Programmatically Interpretable Reinforcement
Learning, ICML"18.

Represent policy using domain specific language.
Firstly learn a neural network by DRL to represent the policies.

Then produce local search over programmatic policies that
minimize the L2 distance from neural oracle (or most closely
imitates the behavior of its neural counterpart).



Graphics Program

» Ellis, Solar-Lezama and Tenenbaum, Learning to Infer
Graphics Programs from Hand-Drawn Images, NIPS'18.

» Learn to convert hand drawings into IATEXprograms.

» CNN learning hand drawings as 'primitives’, which serves as
specification.

» Bottom-up Search Program Synthesis by learning a search
policy that obtains a trade-off between search space and cost

minimization.
Image Spec/Drawing Commands Program
(Observed) (Latent) (Latent)

Rendering Execution |for (j < 3)

line, line,
K T rectangle, e ~Jfor (i < 3)
line, ... if (...)

0 line(...) Extrapolati
s o 1ineC xtrapolation
= rectangle (...)

Learning + Learning + Error
Stochastic search Program synthesis correction

Section 2: Image—Spec Section 3: Spec—Program Section 4: Applications



Conclusion

» The Three Methods (Enumerative Search, Constraint Solving,
Stochastic Search) are Combining!

» Cooperate with ABL!
» Program Invention?
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