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Abstract

Metascience helps improve scientific research by not only synthesizing research on a topic but also elabo-
rating the common sense for shaping an appropriate mindset to study the topic. Though the end-users of
metascience are scientists, user-centered considerations have been under-researched. Modeling how scien-
tists work with science is possible, given the great progress on computational modeling of human cognitive
progress. Hence, some major obstacles for scientists, i.e., proposing perspectives and hypotheses, or capturing
global information and local details simultaneously, can be partly automated and transparentized, improving
the reliability and reproducibility of research. This concept paper introduces computational human-centered
metascience through the most elementary research skill—framing a perspective with reviewing the literature.
This problem can be decomposed to computational, algorithmic, and implementational levels, regarding the
macro view how perspective communicate with each other, how to frame perspectives automatically, and
how to scientists understand and present perspectives. This case on perspective modeling goes over the
major components to consider human-centered metascience. On this basis, such introspective understanding
can be generalized to identify different mindsets of scientific research. We further review the divergence of
perspectives and the convergence of common grounds in the development of science to enhance the value of
introspective studies.

Metascience helps improve the sciences through studying and optimizing scientific research (Ioannidis
et al., 2015). As metascience provides a bird’s eye view of science, reviews serve as the bird’s wing (Ioannidis,
2022)—(1) for researchers, a good review frames a specific perspective out of the literature with the authors’
unique insights about the topic; (2) for the community, reviews communicate between groups of researchers
with different mindsets. However, the merits of reviews limited by an elementary contradiction—on the
prerequisite of naturalism (Papineau, 2021), the end-user of science is human, while science aims to describe
the world. That is, people work with science from diverse specific perspectives, but the world described
by science is the one. Hence, a good review for research synthesis (Gurevitch et al., 2018), should cover
the perspectives on the same topic. Further, it should also cover the common sense, e.g., methodologies, for
studying the topic, in order to really be helpful to the community. These shape the human-centered feature
of reviews. Unfortunately, the value of studying these interactions between science and scientists is often
underestimated. Can we compute the perspective and the common sense? Philosophers have gave the
initial responses through the introspection from scientists, i.e., Peirce’s Abduction and Popper’s Hypothetico-
deduction (Peirce, 1955; Popper, 1959), providing us with a good starting point to answer the questions in a
computational way—as the significant progress in computational cognitive science (Lake et al., 2017), we are
close to be able to model complex thinking patterns in real scenes. Computational models of scientific thinking
patterns may lead to two potential merits: (1) proposing and predicting research common sense given specific
research context (e.g., experiments, data, and literature); and (2) providing strong evidence at the large scale
to current debates on the appropriateness of methodologies. Of course modeling scientific thinking patterns
would never replace the insights generated by researchers—it is only generating proposals to broaden the
limited bandwidth of researchers, and researchers refer to the proposals according to their values. This also
disentangles researchers’ personal bias from the entire development of the research projects, thus improve
the reliability and reproducibility of science by transparentizing the decisions made by researchers.

Given the background, we propose to study computational human-centered metascience in two levels: (1)
perspective-driven narrative and systematic literature mining; (2) introspective scientific thinking pattern
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Figure 1: Framing diverse perspectives from the literature

modeling. Specifically, the former is an indispensable basis for the latter, which makes the computational mod-
eling work much more accessible. We can explicitly model a perspective, whether predefined or generated,
then project the literature to this perspective, framing an expert review with high-level insights, a systematic
review with research methodologies, and a meta-analysis with result synthesis from the literature, only
conditioned on what kind of perspective it is (see Fig. 1 for details). This computational pipeline automates
(1) framing ideas from researchers’ perspectives; (2) aligning researchers’ mindsets to understand each other;
and (3) merging diverse perspectives to develop a complete and deep understanding. On this basis, we are
able to handle in-situ scientific problems in the human-centered way given the model from the literature.

Perspective matters in science

Why does perspective matter? Everyone answers from her own perspective—this may have already
shown the significance of perspective itself. People view the world conditioned on perspectives due to
highly limited cognitive resources (Lieder and Griffiths, 2020); and people interpret the world from different
perspectives based on diverse prior—especially when the world is a very complex system with connected
concepts, whether it is consist of empirical thoughts or of scientific theories and explanations (Gopnik and
Wellman, 1994)—that is why good research is framing a perspective, covering a wide range from result
collection to theory comprehension (Abend, 2008; Denyer and Tranfield, 2009); and may also explain how our
diverse communities of sciences have become what they are today, with inclusion of the known unknowns
(e.g., evidence-based medicine (Sackett, 1997)), diverse competing theories (Ioannidis, 2005), and active
interdisciplinary collaborations (Bronstein, 2003).

The first thing is to identify the scales of the problem. Here we propose three levels of the scientific
problem behind human-centered metascience according to Marr’s levels of analysis theory (Marr, 1982).
Marr’s paradigm provides researchers with a framework to analyze a problem in three levels: (1) computational
level defines the objective of an abstract computational problem, i.e., what is the problem to solve; (2) algorithmic
level indicates the algorithm and the transformation of representation to be performed for solving the problem,
i.e., how to solve the problem; and (3) implementational level focuses on the physical basis to implement the
algorithm, i.e., how to realize the solution.

Analogously, for human-centered metascience, we have (1) computational level: the macro abstract for-
mulation of framing and communicating perspective frames; (2) algorithmic level: the explicit modeling of
perspectives and the automated computational pipeline for mining perspectives from the literature; and
(3) implementational level: the interaction between science and researchers, the end-user of science, such as
user-friendly interface of reviews.

Computational level The computational level of human-centered metascience can be analogous to a
distributed Bayesian inference problem (Ellison, 2004; Krafft et al., 2016) (see Tab. 1 for details). First, a
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Figure 2: An example for visualizing the Bayesian generalization literature from the perspective of Rationality. The
perspective frame is visualized by Shi and Zhu (2022), a tool for generating frames of perspectives in scientific research

researcher cannot know everything about a piece of high-dimensional knowledge due to limited cognitive
resources (Lieder and Griffiths, 2020). This is in line with the curse of dimensionality in density estimation—let
P (x) be the marginal density that knowledge x ∈ X (X is the high-dimensional space of all modalities
of knowledge), estimating P (x) directly is intractable. Second, researchers have diverse mindsets due to
expertise, experience, background, and interest. We can view the mindsets as prior z in latent space Z with
all potential perspectives, where P (z) is the distribution of the perspectives. Third, the human-centered
knowledge can be viewed as the joint density P (x, z), which can be generated through P (z)P (x|z) according
to Bayes theorem, where P (x|z) the interpretation of knowledge x conditioned on perspective z. Finally, if
the diversity of the researchers is enough and we are able to merge the perspectives, we obtain a deeper
understanding of the piece of knowledge. Formally, merging perspectives is the marginalization over P (x, z),
i.e., P (x) =

∑
z P (x, z). In contrast to research synthesis, we explicitly model the process of generating,

interpreting, and merging. To note, this formulation views knowledge in a static way—if we append a
temporal dimension to view science as a dynamic process, we may be able to study the evolution of science
by integrating the propagation of perspectives into the graph-dynamics based science of science research as a
constraint (Griffiths, 2020; Fortunato et al., 2018).

Table 1: The analogy between computational level of human-centered metascience and distributed Bayesian inference.

challenge prior generation merge
Bayesian inference intractable P (x) P (z) ∈ Z P (x, z) = P (z)P (x|z) P (x) =

∑
z P (x, z)

computational level limited bandwidth diverse prior diverse interpretations in-depth understanding

Algorithmic level The algorithmic level of human-centered metascience aims to automate the process of
generating, interpreting, and merge. In contrast to current review composition techniques, which mostly
combine the general summarizations of multiple papers (Wallace et al., 2021; DeYoung et al., 2021), the
algorithm generates summarizations of papers and identify the latent relations between studies conditioned
on the given perspective. To help understand the input and the output of the algorithmic level problem, we
use extremely simple geometries to illustrate the abstract concepts about perspective. If we treat a paper
as a three-dimensional cylinder, the potential perspectives in the paper can be an infinite series of slices. In
general, a good paper is rich enough to be viewed from diverse perspectives (see Fig. 1a). For example, we
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(a) pipeline for perspective-oriented literature mining (b) review reconstruction as the pipeline evaluation process

Figure 3: The computational pipeline in the algorithmic level problem of human-centered metascience

may focus on its hypotheses and results, methods, experimental paradigms—anything that may support
our claim. Interpreting a paper from a specific perspective is projecting the three-dimensional entity to
a specific two-dimensional slice (see Fig. 1b and 1c). A perspective is a two-dimensional space, which is
typically called a frame of the perspective, where different slices of different paper connect with each other
via their relations conditioned on the perspective (see Fig. 1d to 1f). Please note that we are not interested
in the general relation between two papers, such as A being cited by B—we are interested in the latent
relation only given the perspective, for example, A and B are mutually equivalent in the essence of problem
formulation, A advances by B regarding computational efficiency. If A and B share similar backgrounds given
the perspective, the relation between A and B may likely be the difference; if not so, the relation may likely
be the common (see Frank and Goodman (2012) for the descriptions about the phenomenon). Since people
are diverse enough in expertise, background, and interest, to come up with diverse perspectives, there can be
infinite perspective frames for across an arbitrary set of papers, just like infinite parallel spaces in the universe
as we imagined—papers are the same, yet interpretations become different (see Fig. 1g and 1h). Hence, this
computational pipeline has the potential to help scientists come up with mutually exclusive and collectively
exhaustive proposals of perspectives and help find out latent relations between studies (see Fig. 3a). This
makes the automated process of proposing insights from the literature much more transparent, reliable, and
controllable. A review reconstruction task is also designed to evaluate the pipeline—the interpretations of
citing papers from well-written narrative reviews and systematic reviews are collected as ground-truths (see
Fig. 3b)—on the assumption that the collected reviews are i.i.d. to the entire literature.

Implementational level The implementational level of human-centered metascience studies the interaction
between science and scientists. Scientists, whether senior researchers as lab directors or junior students
under training, are very creative but suffering from limited cognitive bandwidth (Griffiths, 2020). Mean-
while, computers are never as generalizable as scientists, but have much larger memory bandwidth. Hence,
appropriate knowledge representations of science that facilitate the creativity and makeup the bandwidth
are crucial for human-centered considerations. In contrast to scientific literature visualization, the canonical
content-centered approach where the all-in-one knowledge representation is designed for the general users
(Li et al., 2019), the human-centered approach should generate simplified individual proposals of knowledge
representation (e.g., visualization of systematic reviews) to different users according to their perspective.
Specifically, the three classical families of knowledge organization protocol, hierarchical structure (tree),
many-to-many mapping (label), and multi-layer network (graph), trade-off between accessibility and ex-
pressivity (see Tab. 2 for details). From the content-centered view, the expressivity of label outperforms tree
because the division space is extended from single to multiple; and that of graph outperforms label because
the explicit knowledge integration of first-order relation. From the human-centered view, the user accessibility

Table 2: The trade-off between expressivity and accessibility over the three families of knowledge organization
protocols. Multiple-space: multiple division spaces, such as the space of model, the space of result, the space of motivation,
etc. Multiple-entry: more than one entry, and the root is the only one entry in a tree. First-order relation: relation between
two entities. Rough clustering: classify entities without knowing their pairwise relations. Quick labeling: classify entities in
a non-parametric way, i.e., without the preregistration of the categorical spaces. Meaningless entry: structural constraints
without explicit semantic meaning.

content- or human-centered expressivity accessibility
features multiple-space multiple-entry first-order relation rough clustering quick labeling meaningless entry

hierarchical structure (tree) ✗ ✗ ✗ ✓ ✓ ✓
many-to-many mapping (label) ✓ ✓ ✗ ✓ ✓ ✗

multi-layer network (graph) ✓ ✓ ✓ ✗ ✗ ✗
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comes in the opposite trend because if one wants to frame a perspective with a graph, she must already have
been come up with insights about the knowledge, and tree and label are more accessible as a quick review
or intuitive, instant, and superficial understanding of the knowledge. These families of protocol should
automatically adapt to different scenarios and users, e.g., physicians at evidence-based medical decision
or cross-disciplinary researchers searching in a novel domain without their expertise. Rigorous behavioral
studies should also be carried out to study the effect of these treatments on science education through the
A/B test (Angrist et al., 1996).

Introspective study on scientific thinking patterns

Usually there is no general methodology that can serve as the gold standard for all specific domains in
the sciences—there is no free lunch in the world, and every domain has its own common sense emerged
as the result of the hard work by generations of scientists. The common sense can be high-level thinking
patterns for identifying scientific problems, insights for making plausible hypotheses, principles for designing
experiments, and methodologies for explaining observations; and also low-level working techniques, bag-
of-tricks, and specific systems of terminologies. The diverse specific domains in the sciences may distinct
from each other by composing these components with different weights, which is generally accepted as the
philosophy of the domain. Domain-specific common sense is priceless for the sciences, and its value has long
been underestimated. Though the data mining for science community, such as artificial-intelligence-aided
drug design, has enjoyed a great progress over recent years (Schneider et al., 2020), only a small amount of
cases and domain knowledge has been exploited in computation (Dai et al., 2021). Usually the design of
computation models are tricky because the computational problem has been abstracted to a pure data mining
problem without any need of domain expertise. The elementary problem is that this kind of algorithms can
only generate or predict things they have seen in the data. Machines cannot help people imagine. Hence,
introspectively modeling the thinking patterns of scientists may help researchers go beyond current progress
in the domain to imagine the future.

Discovery vs. Invention Some domains of science are observation-explanation-dominant, such as exper-
imental chemistry, developmental psychology, economics, and history—the main driving force of these
domains is understanding something, where problems and hypotheses are more important than results, and
the expectation for discovery is much more higher than that for invention; other domains of science are
requirement-goal-dominant, such as computer engineering, robotics, finance, and management—the main
driving force of theses domains is realizing something, where the expectation for invention is much more
higher than that for discovery. Besides these two families, some domains communicate between discovery
and invention, such as drug design, energy materials (battery) research, and computational sciences. These
domains iteratively switch between discovery and invention—sometimes a requirement-driven invention
leads to a series of property discovery based on the invention; and sometimes a significant discovery leads to
insights on a great invention. A famous example in computation is the invention of the imagined number—it
is invented for solving cubic equations, but more properties have been discovered subsequently to form the
domain of complex analysis. And for domains like drug design and battery design, explaining the working
mechanism of an invented structure is crucial for guaranteeing the reliability of the target product. This
research methodology comes from another great effort—since there is no principles help design the structure
directly as a production of rules, we design the structures from intuition, then explain the mechanisms as
constraints over a symbolic production system. Such rational decision is the hallmark of human intelligence,
which should be explicitly modeled to improve research.

Human-centered vs. Content-centered As aforementioned, the contradiction between human-centered
and content-centered way is elementary in science. Has any domain balance the description of the world
and satisfying human need? The answer is yes. As a basic tool for computation, programming languages
communicates between human users and the world—(1) a programming language is used to describe or
model an object, a scenario, or a system, e.g., 3D masks of human faces, biological experiment protocols,
and electronic systems; (2) a programming language is designed to satisfy users’ need and bias, such as
the requirements for object-oriented programming, for functions, and for stream and procedures (Abelson
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and Sussman, 1996). The former comes as low-level instruction sets that only consider content modeling,
while the latter comes as high-level programming languages that only consider user requirement, assuming
that all programming languages can be translated to instructions. And the compiler bridges the two ends.
Hence in science, we may also need such compilers that translate human-centered perspectives toward a
mediator that can be merged with or be translated to other perspectives. The compilers should capture how
the perspective is framed from the content. And the mediator is a commonground that reaches the consensus
between different perspectives. Human-centered metascience is not isolating the human-centered and the
content-centered views—on the contrary, it is explicitly considering the communication between the two
fashions to mitigate the contradiction.

Perspective vs. Commonground If a personal perspective is a conditional view of the world, a com-
monground should be the consensus reached by a group of persons without conditioning. In the extreme
situations, if the group of consensus is large enough to include all people in the world, the commonground
hold by the group becomes the commonsense. Here we hypothesize that perspective and commonsense
should be the two ends of the entire knowledge space, between which are different levels of commongrounds,
different in levels according to group sizes (see Fig. 4). Knowledge close to perspective is in-depth, narrow,
and diverse across population; knowledge close to commonsense is shallow, general, and convergent over
population. Going from perspective (lower levels of commonground) to commonsense (high levels of com-
monground) is reducing knowledge to their more basic and abstract forms, washing off condition-specific
considerations and human bias; going from higher to lower levels of commonground is interpreting knowl-
edge according to their bias and other constraints. This may echo the finding that semantic representations of
abstract words are more diverse than that of concrete words (Wang and Bi, 2021)—compared with concrete
words, the abstract ones have ‘a longer way’ to be grounded, which means more choices for the interpretation.
Similarly, given the great diversity of the science community, we must admit that personal bias may lead
to scientific flaws, but some of them become the starting points of great breakthroughs in the history of
science, since they are from numerous thinking based on both expertise and insight, such as the discovery of
Kekule structure (Gruber, 1981). Kekule’s perspective on organic chemistry comes from strong personal bias.
Hence, we should rethink the value of diversity—instead of trying to eliminate all bias in science, we can try
embracing the bias that can be subsequently framed into perspectives which lead to meaningful research
directions. After all, although commongrounds bridge the obstacles between sciences for communication
and learning, it is perspective that extends the boundary of science, from the deep and narrow.
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Abduction vs. Hypothetico-deduction Based on the hypothesis of knowledge space between perspective
and commonsense, we are facing a crucial problem: How do the commongrounds emerge? This is a typical
chicken-and-egg problem. After all, whether does the discovery or the invention come first? More concretely, in
specific domains of science, is a commonground more likely derived from its higher-level commonground
(commonsense) in a top-down way, or from its lower-level commonground (perspective) in a bottom-up way?
Both happens. When discovery is coming from the observation of surprising facts, it reduces the explanation to
higher levels of commongrounds successively (van Riel and van Gulick, 2019); when invention is coming
from the motivation for unrealized goals, it preregisters a target level of commonground at first and rationalize
the pathway (Cushman, 2020). This explanation connects discovery and invention with Abduction and
Hypothetico-deduction respectively. In the two frameworks, not only the reasoning is nondeterministic, but
the prior model crucially determines the direction of reasoning. Hence, these two thinking patterns are highly
human-centered. Moreover, as Peirce has reiterated, Abduction is the only logical operation which introduces any
new idea; it encompasses all the operations by which theories and conceptions are engendered (Peirce, 1955), we are
able to believe that Abduction and Hypothetico-deduction are two of the most significant scientific thinking
patterns that have the potential to integrate individual perspectives and to derive domain-specific common
sense. Once we are able to go beyond scientific data mining, we can build a machine scientist that help
imagine the future of science.

Table 3: The connections between the discovery-driven and invention-driven research, with respective to the two
scientific thinking frameworks, Abduction and Hypothetico-deduction.

Abduction (discovery) Hypothetico-deduction (invention)
input observations inconsistent with current knowledge requirements that cannot be realized with current knowledge

objective reduce the explanatory hypotheses form the observation rationalize the hypothesized derivations for the target
output the plausible explanation of the observation the rationalized realization of the requirement

example the discovery of Kepler’s laws of planetary motion the invention of the imagined number
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